Forgot password?
 Register account
View 150|Reply 0

[组合] 在n元集中,可以选择多少r元子集,每两个共有元素数≤k

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2023-3-29 18:11 |Read mode
S. Jukna, Extremal Combinatorics, Texts in Theoretical Computer Science. page 23
(Corrádi 1969). 设 $A_1, \ldots, A_N$ 为 $r$元集, $X$ 为它们的并.
若 $\left|A_i \cap A_j\right| \leq k$ 对任何 $i \neq j$, 则
$$\tag{2.1}
|X| \geq \frac{r^2 N}{r+(N-1) k} .
$$
Proof
由 (1.11), 对任何 $i=1, \ldots, N$,
$$\tag{2.2}
\sum_{x \in A_i} d(x)=\sum_{j=1}^N\left|A_i \cap A_j\right|=\left|A_i\right|+\sum_{j \neq i}\left|A_i \cap A_j\right| \leq r+(N-1) k .
$$
对所有 $A_i$ 求和. 用Jensen's inequality (1.15), 我们得到
$$
\sum_{i=1}^N \sum_{x \in A_i} d(x)=\sum_{x \in X} d(x)^2 \geq \frac{1}{n}\left(\sum_{x \in X} d(x)\right)^2=\frac{1}{n}\left(\sum_{i=1}^n\left|A_i\right|\right)^2=\frac{(N r)^2}{n} .
$$
由 (2.2) 得 $(N r)^2 \leq N \cdot|X|(r+(N-1) k)$, 给出了 $|X|$ 的下界.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:51 GMT+8

Powered by Discuz!

Processed in 0.017924 second(s), 22 queries

× Quick Reply To Top Edit