Forgot password?
 Register account
View 310|Reply 10

[几何] $AA',BB',CC'$为对应元素的角平分线、中线、高线,且三线共点

[Copy link]

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

abababa Posted 2023-4-2 20:18 |Read mode
Last edited by abababa 2023-4-2 20:39在锐角$\triangle ABC$中,$AA',BB',CC'$为对应元素的角平分线、中线、高线,且这三线共点。这样的三角形要怎么才能画出来?有没有什么等量性质?我知道一个不等式性质:$\angle BAC>45^\circ$。

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

hbghlyj Posted 2023-4-3 01:54
如何证明$\angle BAC>45^\circ$

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

hbghlyj Posted 2023-4-3 02:26
trilinear coordinates of the incenter = 1:1:1
trilinear coordinates of the centroid = 1/a:1/b:1/c
trilinear coordinates of the orthocenter = secA:secB:secC
$$0=\left|
\begin{array}{ccc}
0 & 1 & -1 \\
-\sin(A) & 0 & \sin(C) \\
\cos(A) & -\cos(B) & 0 \\
\end{array}
\right|=\cos (A) \sin (C)-\sin (A) \cos (B)$$
Find an instance:
  1. ASATriangle[∠B,1,∠C]/.FindInstance[{Cos[∠A]<1/2,Cos[∠B] Sin[∠A]==Cos[∠A] Sin[∠C],0<=∠A,0<=∠B,0<=∠C,∠A+∠B+∠C==Pi},{∠A,∠B,∠C}][[1]]//N
Copy the Code
Output: Triangle[{{0., 0.}, {1., 0.}, {0.10511101672245106, 0.5416149018608618}}]
Asymptote:        

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2023-4-3 14:35
这个我想出来怎么画了,点B先不确定,先画出点A和C,这时AC的中点B'能画出来,然后画一个角A,则AB所在的直线能确定,角平分线也能画出来。再之后能确定AB边的垂线CC',这时根据垂线CC'和角A的平分线,就能确定三线共点的O。最后画出B'O和AB所在直线的交点就是B点,就全部确定了。
只是这样画,最后那个三角形底边是斜着的,不是和x轴平行,有点不好看。tkz-euclide代码如下:
  1. \begin{tikzpicture}[scale=2,label style/.style={font=\scriptsize}]
  2. \tkzDefPoints{4/3/A,5/0/C}
  3. \tkzDefMidPoint(A,C)\tkzGetPoint{B'}
  4. \tkzDefPointBy[rotation=center A angle -35](B')\tkzGetPoint{X}
  5. \tkzDefPointBy[rotation=center A angle -70](B')\tkzGetPoint{Y}
  6. \tkzDefPointBy[projection=onto A--Y](C)\tkzGetPoint{C'}
  7. \tkzInterLL(A,X)(C,C')\tkzGetPoint{O}
  8. \tkzInterLL(B',O)(A,C')\tkzGetPoint{B}
  9. \tkzInterLL(B,C)(A,O)\tkzGetPoint{A'}
  10. \tkzDrawSegments[color=OliveGreen](A,B B,C C,A A,A' B,B' C,C')
  11. \tkzLabelPoints[above][color=blue](A)
  12. \tkzLabelPoints[left][color=blue](B)
  13. \tkzLabelPoints[below right][color=blue](C)
  14. \tkzLabelPoints[above right][color=blue](O)
  15. \tkzLabelPoints[below left][color=blue](A')
  16. \tkzLabelPoints[right][color=blue](B')
  17. \tkzLabelPoints[above left][color=blue](C')
  18. \tkzDrawPoints[color=blue,fill=blue](A,B,C,A',B',C',O)
  19. \end{tikzpicture}
Copy the Code

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2023-4-3 14:38
hbghlyj 发表于 2023-4-3 01:54
如何证明$\angle BAC>45^\circ$
设$BD$为高,$\triangle ABC$的面积为$S$。

由于$\triangle ABC$为锐角三角形,所以$D$在线段$AC$上,所以$\angle DC'B>\angle CC'B=90^{\circ}$,因此$\triangle DC'B$为钝角三角形,$\angle DC'B$为钝角,所以$BD>BC'$。

根据塞瓦定理可知$\frac{AC'\cdot BA'\cdot CB'}{C'B\cdot A'C\cdot B'A}=1$,而$CB'=B'A, \frac{BA'}{A'C}=\frac{AB}{AC}$,所以$\frac{AC'\cdot AB}{C'B\cdot AC}=1$,所以$AC'\cdot AB=C'B\cdot AC<BD\cdot AC=2S$,于是$AC'<\frac{2S}{AB}=CC'$,所以$\angle ACC'<\angle CAC'$。而$\angle ACC'+\angle CAC'=90^{\circ}$,所以$\angle CAC'>45^{\circ}$,即$\angle BAC>45^{\circ}$。

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2023-4-3 19:11
可以这么做:如图,作直角三角形$CC'A$,再作$\angle A$的平分线与过$C'$且平行于$AC$的直线交于$A'$,延长$AC',CA'$交于$B$,易得这样的三角形满足要求,然后令$\angle C$是直角,可求得一个临界角$\cos \angle BAC=\frac{\sqrt{5}-1}{2}$
屏幕截图 2023-04-03 185352.png

411

Threads

1623

Posts

110K

Credits

Credits
11833

Show all posts

 Author| abababa Posted 2023-4-3 21:28
Ly-lie 发表于 2023-4-3 19:11
可以这么做:如图,作直角三角形$CC'A$,再作$\angle A$的平分线与过$C'$且平行于$AC$的直线交于$A'$,延长$A ...
这个作法和4楼是一样的,只是这里把AC放在水平方向上了,而我还是想把BC放在水平方向,但这样如果不计算那些点的话,就不太好画出来。

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

hbghlyj Posted 2023-4-23 19:05
abababa 发表于 2023-4-3 07:38
即$\angle BAC>45^{\circ}$。
找到一个反例
  1. ASATriangle[\[Angle]B,1,\[Angle]C]/.FindInstance[{Cos[\[Angle]A]>Sqrt[2]/2,Cos[\[Angle]B] Sin[\[Angle]A]==Cos[\[Angle]A] Sin[\[Angle]C],0<=\[Angle]A,0<=\[Angle]B,0<=\[Angle]C,\[Angle]A+\[Angle]B+\[Angle]C==Pi},{\[Angle]A,\[Angle]B,\[Angle]C}][[1]]//N
Copy the Code
Triangle[{{0., 0.}, {1., 0.}, {1.15271, 0.112232}}]
$\angle A=30.7533$°

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2023-4-23 20:50
hbghlyj 发表于 2023-4-23 19:05
找到一个反例

Triangle[{{0., 0.}, {1., 0.}, {1.15271, 0.112232}}]
题面是锐角三角形

Comment

哦!好的。😥  Posted 2023-4-23 20:51

3163

Threads

7940

Posts

610K

Credits

Credits
63798
QQ

Show all posts

hbghlyj Posted 2023-4-23 20:56
Ly-lie 发表于 2023-4-3 12:11
然后令$\angle C$是直角,可求得一个临界角$\cos \angle BAC=\frac{\sqrt{5}-1}{2}$
NMaximize算得结果相同😀
  1. In[]:= NMaximize[{Cos[∠A],Cos[∠B] Sin[∠A]==Cos[∠A] Sin[∠C],0<=∠A<=Pi/2,0<=∠B<=Pi/2,0<=∠C<=Pi/2,∠A+∠B+∠C==Pi},{∠A,∠B,∠C}]
  2. Out[]= {0.618034,{∠A->0.904557,∠B->0.666239,∠C->1.5708}}
Copy the Code

Mobile version|Discuz Math Forum

2025-6-3 06:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit