Forgot password
 Register account
View 181|Reply 2

[数列] 能不能求数列的通项?

[Copy link]

422

Threads

911

Posts

0

Reputation

Show all posts

lemondian posted 2023-4-3 11:03 |Read mode
(1)已知数列$\{{a_n}\},a_1=0,a_2=\frac{3}{2},a_3=\dfrac{3}{8},a_{n+3}=\frac{3}{4}a_{n+1}+\dfrac{1}{8}a_n$,请问能不能求得$\{{a_n}\}$通项公式?
(2)已知数列$\{{a_n}\},a_1=\frac{1}{2},a_2=\frac{5}{4},a_3=\dfrac{1}{2},a_{n+3}=\frac{1}{2}a_{n+2}+\frac{1}{2}a_{n+1}-\dfrac{1}{8}a_n$,请问能不能求得$\{{a_n}\}$通项公式?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-4-3 11:43
用特征根那套方法啊,解三次方程就是了。

24

Threads

1014

Posts

46

Reputation

Show all posts

战巡 posted 2023-4-3 12:09
线性递推数列都能解的啊

很显然有不动点方程
\[x^3=\frac{3}{4}x+\frac{1}{8}\]
解得
\[x_1=\cos(\frac{\pi}{9}),x_2=-\cos(\frac{2\pi}{9}),x_3=-\cos(\frac{4\pi}{9})\]
然后
\[a_n=c_1x_1^n+c_2x_2^n+c_3x_3^n\]
套进去$a_1,a_2,a_3$,解得
\[a_n=\cos^n(\frac{\pi}{9})+(-\cos(\frac{2\pi}{9}))^n+(-\cos(\frac{4\pi}{9}))^n\]


第二个同理,最后会得到
\[a_n=\cos^n(\frac{\pi}{7})+(-\cos(\frac{2\pi}{7}))^n+(-\cos(\frac{4\pi}{7}))^n\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:12 GMT+8

Powered by Discuz!

Processed in 0.012337 seconds, 22 queries