|
(1)已知数列$\{{a_n}\},a_1=0,a_2=\frac{3}{2},a_3=\dfrac{3}{8},a_{n+3}=\frac{3}{4}a_{n+1}+\dfrac{1}{8}a_n$,请问能不能求得$\{{a_n}\}$通项公式?
(2)已知数列$\{{a_n}\},a_1=\frac{1}{2},a_2=\frac{5}{4},a_3=\dfrac{1}{2},a_{n+3}=\frac{1}{2}a_{n+2}+\frac{1}{2}a_{n+1}-\dfrac{1}{8}a_n$,请问能不能求得$\{{a_n}\}$通项公式? |
|