|
Absorbing probabilities
By induction,
$$ P^{k}={\begin{bmatrix}Q^{k}&(1-Q^{k})NR\\\mathbf {0} &I_{r}\end{bmatrix}}. $$
The probability of eventually being absorbed in the absorbing state $j$ when starting from transient state $i$ is given by the $(i,j)$-entry of the matrix
$$ B:=NR $$
The number of columns of this matrix equals the number of absorbing states $r$.
An approximation of those probabilities can also be obtained directly from the $(i,j)$-entry of $ P^{k} $ for a large enough value of $k$, when $i$ is the index of a transient, and $j$ the index of an absorbing state. This is because
$$ \left(\lim _{k\to \infty }P^{k}\right)_{i,t+j}=B_{i,j} $$
For $n=3$
The states are $0,\frac13,\frac23,1,\frac43,\frac53$, where $0,\frac13,\frac23$ are transient states, $1,\frac43,\frac53$ are absorbing states.
$$P=\begin{pmatrix}Q&R\\\mathbf {0} &I_3\end{pmatrix}=\left(
\begin{array}{ccc|ccc}
0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 & 0 \\
0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\
0 & 0 & 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\\hline
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)$$
- Q = {
- {0, 1/3, 1/3},
- {0, 0, 1/3},
- {0, 0, 0}
- };
- R = {
- {1/3, 0, 0},
- {1/3, 1/3, 0},
- {1/3, 1/3, 1/3}
- };
- MatrixForm[Inverse[IdentityMatrix[3] - Q] . R]
Copy the Code \begin{pmatrix}
\frac{16}{27} & \frac{7}{27} & \frac{4}{27} \\
\frac{4}{9} & \frac{4}{9} & \frac{1}{9} \\
\frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\
\end{pmatrix}读取第一行(因为start from 0)
结果为$1,\frac43,\frac53$的概率为$\frac{16}{27},\frac{7}{27},\frac{4}{27}$
相关帖子 |
|