Forgot password
 Register account
View 306|Reply 2

[函数] 代数式恒等变形

[Copy link]

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2023-4-5 19:06 |Read mode
$ab+\sqrt{ab+1}+\sqrt{b^2+a}\cdot\sqrt{a^2+b}=0$,求$a\sqrt{b^2+a}+b\sqrt{a^2+b}$的值.

解:
$(ab+\sqrt{ab+1})^2=(\sqrt{b^2+a}\cdot\sqrt{a^2+b})^2$


$(ab)^2+ab+1+2ab\sqrt{ab+1}=(ab)^2+ab+a^3+b^3$


$a^3+b^3-2ab\sqrt{ab+1}=1$

令$x=a\sqrt{b^2+a}+b\sqrt{a^2+b}$,平方得:
$x^2=a^3+a^2b^2+b^3+a^2b^2+2ab\sqrt{b^2+a}\cdot\sqrt{a^2+b}$
由已知得
$\sqrt{b^2+a}\cdot\sqrt{a^2+b}=-(ab+\sqrt{ab+1})$
所以
$x^2=a^3+a^2b^2+b^3+a^2b^2-2ab(ab+\sqrt{ab+1})=a^3+b^3-2ab\sqrt{ab+1}=1$
所以$x=\pm1$.
正负1如何取舍??

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-4-6 03:34
可以简洁一些,设 `x=a\sqrt{b^2+a}+b\sqrt{a^2+b}` 后,由条件有
\begin{align*}
\bigl(\sqrt{b^2+a}+b\bigr)\bigl(\sqrt{a^2+b}+a\bigr)&=-\sqrt{ab+1}+x,\\
\bigl(\sqrt{b^2+a}-b\bigr)\bigl(\sqrt{a^2+b}-a\bigr)&=-\sqrt{ab+1}-x,
\end{align*}
相乘即得
\[ab=ab+1-x^2\riff x^2=1,\]
取舍也简单,由条件显然有 `ab<0`,由对称性不妨设 `a<0<b`,则由
\[b^2(a^2+b)-a^2(b^2+a)=b^3-a^3>0,\]
即得 `b\sqrt{a^2+b}>-a\sqrt{b^2+a}`,即 `x>0`,所以 `x=1`。

68

Threads

406

Posts

3

Reputation

Show all posts

original poster Tesla35 posted 2023-4-6 17:27
kuing 发表于 2023-4-6 03:34
可以简洁一些,设 `x=a\sqrt{b^2+a}+b\sqrt{a^2+b}` 后,由条件有
\begin{align*}
\bigl(\sqrt{b^2+a}+b\bi ...
谢谢kuing

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:52 GMT+8

Powered by Discuz!

Processed in 0.011939 seconds, 22 queries