Forgot password?
 Register account
View 324|Reply 3

[函数] 一道代数式的计算解惑???

[Copy link]

62

Threads

175

Posts

1264

Credits

Credits
1264

Show all posts

nttz Posted 2023-4-8 15:58 |Read mode
代数.png
一道初中代数题,第二种方法哪儿错了?难道不是同解方程么,谁能说说根本原因

62

Threads

175

Posts

1264

Credits

Credits
1264

Show all posts

 Author| nttz Posted 2023-4-9 09:33
Last edited by nttz 2023-4-9 10:02第一种方法没有问题,第二种为啥不好做,难道题目出错了???比如分子和分母的中的x,y,z,前面的系数可以任意改变,都可以算出值出来,如果z是常数还能理解

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2023-4-10 11:14
你这肯定不对啊,凭啥最后一定是$\frac{-k}{2}=\frac{k-1}{3}=\frac{4-k}{5}$?

这两条方程不只是代表它们本身成立,还有它们所有的线性组合都为$0$,也就是
\[p(x+2y-3z)+q(2x+3y+5z)=0, p,q\in\mathbb{R}\]

如果非要按你这么解的话,只能这样
\[x+y+z-k(x-y+z)=p(x+2y-3z)+q(2x+3y+5z)\]
\[(1-k)x-(1+k)y+(1-k)z=(p+2q)x+(2p+3q)y+(-3p+5q)z\]
\[\begin{cases}1-k=p+2q\\-1-k=2p+3q\\1-k=-3p+5q\end{cases}\]
解出来
\[k=\frac{29}{7}, p=-\frac{6}{7}, q=-\frac{8}{7}\]

62

Threads

175

Posts

1264

Credits

Credits
1264

Show all posts

 Author| nttz Posted 2023-4-11 08:51
Last edited by nttz 2023-4-11 20:46
战巡 发表于 2023-4-10 11:14
你这肯定不对啊,凭啥最后一定是$\frac{-k}{2}=\frac{k-1}{3}=\frac{4-k}{5}$?

这两条方程不只是代表它们 ...
谢谢你的解惑
我把$x+y+z-k(x-y+z)$认为等价于$(x+2y-3z)+\frac{p}{q}(2x+3y+5z)$了,我认为他们就是等价的,但是方程的左边不等同,是倍数关系

Mobile version|Discuz Math Forum

2025-5-31 11:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit