Laplace方程的边值问题
设 $(u,v,w)$ 是 $P(x,y)$ 相对于 $A(0,0),B(2,0.5),C(0.8,2)$ 的重心坐标。
要求区域 $\triangle ABC$ 上的调和函数 $u(x,y)$ 使得 $u$ 在每边上是线性的以及 $u(A)=1,u(B)=0,u(C)=0$。
- Clear[u];u=u/.NDSolve[{Laplacian[u[x,y],{x,y}]==0,DirichletCondition[u[x,y]==1-x/2,x/2==y/0.5],DirichletCondition[u[x,y]==1-x/0.8,x/0.8==y/2],DirichletCondition[u[x,y]==0,(x-2)/(0.8-2)==(y-0.5)/(2-0.5)]},u,Element[{x,y},Triangle[{{0,0},{2,0.5},{0.8,2}}]]][[1]];
- Plot3D[u[x,y],Element[{x,y},Triangle[{{0,0},{2,0.5},{0.8,2}}]]]
- ContourPlot[u[x,y],Element[{x,y},Triangle[{{0,0},{2,0.5},{0.8,2}}]],AspectRatio->Automatic]
Copy the Code 这种调和坐标的定义可应用于任何平面区域,例如矩形。
- Clear[u];u=u/.NDSolve[{Laplacian[u[x,y],{x,y}]==0,DirichletCondition[u[x,y]==1-y,x==0],DirichletCondition[u[x,y]==1-x/2,y==0],DirichletCondition[u[x,y]==0,x==2||y==1]},u,Element[{x,y},Rectangle[{0,0},{2,1}]]][[1]];
- Plot3D[u[x,y],Element[{x,y},Rectangle[{0,0},{2,1}]]]
- ContourPlot[u[x,y],Element[{x,y},Rectangle[{0,0},{2,1}]],AspectRatio->Automatic]
Copy the Code 调和坐标是仿射不变的。
Proof:
Let T(Ω) be any affine transformation of the cage Ω.
Recall that T is bijective, so if p' d T(Ω) then p' = T(p) for some p d Ω.
For clarity, we use the notion hvi for hi
这个证明我看不懂。本文未完待续。 |