Forgot password?
 Register account
View 156|Reply 1

[几何] Mean Distance in an Elliptic Orbit with respect to time

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-12 10:10 |Read mode
开普勒第二定律告诉我们,时间与扫出的面积$A$成正比,我们可以计算这个面积作为我们的参数$$d A=\frac{1}{2} r^{2} d \theta$$计算$r$基于$A$的平均\begin{equation}\label1\operatorname{Avg}(r, A)=\frac{\int_{\theta=0}^{\theta=2 \pi} r d A}{\int_{\theta=0}^{\theta=2 \pi} d A}=a\left(1-e^{2}\right) \frac{\int_{0}^{2 \pi} \frac{d \theta}{(1+e \cos \theta)^{3}}}{\int_{0}^{2 \pi} \frac{d \theta}{(1+e \cos \theta)^{2}}}\end{equation}计算积分$$\int_{0}^{2 \pi} \frac{d \theta}{(1+e \cos \theta)^3}={π (e^2 + 2)\over(1 - e^2)^{5/2}}$$与$$\int_{0}^{2 \pi} \frac{d \theta}{(1+e \cos \theta)^2}={2 π\over(1 - f^2)^{3/2}}$$代入 \eqref{1}\[\operatorname{Avg}(r, A)=a(1 + \frac{1}{2}e^2)\]
这与天文学电子书  9.10: Mean Distance in an Elliptic Orbit中给出的结果一致(它不包含证明)。
On the other hand, the mean distance averaged over the time is \(\frac{1}{2} P \int_0^{\frac{1}{2}P} r dt\). This one is slightly more tricky, but, following the hint for evaluating \(\frac{1}{\pi} \int^\pi_0 r dv\), you could try expressing \(r\) and \(v\) in terms of the eccentric anomaly. It will take you a moment or so, but you should eventually find that the mean distance averaged over the time is \(a(1 + \frac{1}{2}e^2)\).

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-12 10:22
式\eqref{1}是文章The Average Distance of the Earth from the Sun第3节 Average with respect to time 中的公式。在文章中假设 $a=1$,所以它的公式不包含 $a$。文章只计算了数值,没有计算符号积分,也许作者没有意识到$\operatorname{Avg}(r, A)$有这么简单的形式。

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit