Forgot password?
 Register account
View 4178|Reply 15

[函数] 来自人教群的一道三次曲线零点切线的美妙结论

[Copy link]

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2013-8-13 23:40 |Read mode
Last edited by hbghlyj 2025-5-4 11:21若三次曲线 $f(x)=a x^3+b x^2+c x+d(a \neq 0)$ 与 $x$轴有三个不同交点,依次为 $A, B, C$,自点 $A, C$ 分别引曲线 $f(x)$ 的切线,切点分别为 $D, E$,则点 $D, E$ 在 $x$ 轴上的射影分别为线段 $B C, A B$ 的中点.

依题意设 $f(x)=a(x-p)(x-q)(x-r)$,其中 $p<q<r$,则
\[f'(x)=a\bigl((x-p)(x-q)+(x-q)(x-r)+(x-r)(x-p)\bigr),\]
设自 $(p,0)$ 引 $f(x)$ 的切线与 $f(x)$ 相切于 $(s,f(s))$ 且 $s\ne p$,则该切线方程为
\[y=a\bigl((s-p)(s-q)+(s-q)(s-r)+(s-r)(s-p)\bigr)(x-s)+a(s-p)(s-q)(s-r),\]
因为切线过 $(p,0)$,故
\[0=a\bigl((s-p)(s-q)+(s-q)(s-r)+(s-r)(s-p)\bigr)(p-s)+a(s-p)(s-q)(s-r),\]
化简即得
\[0=(s-q)+(s-r).\]

Comment

三次方程Vieta定理$x_A+x_B+x_C=-\frac ba=x_E+x_E+x_C$  Posted 2025-5-4 11:13

770

Threads

4692

Posts

310K

Credits

Credits
35048

Show all posts

isee Posted 2013-8-14 18:11
还有这事儿

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2013-8-14 21:34
回复 2# isee

嗯,所以我佩服发现者,虽然证明不费吹灰之力。

PS、可惜这结论只在三次函数成立,不能推广到更高次,四次就不行。

12

Threads

54

Posts

977

Credits

Credits
977

Show all posts

shidilin Posted 2013-8-15 22:55
貌似二次,三次函数的对称性,也不能很优美地推广。

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-8-17 13:29
回复  isee

嗯,所以我佩服发现者,虽然证明不费吹灰之力。

PS、可惜这结论只在三次函数成立,不能推广 ...
kuing 发表于 2013-8-14 21:34

    要不然kk又可以搞一个推广了

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2013-8-17 14:52
虽然不能推广,但最后得到的方程还是蛮好看的。


\[f(x)=a\prod_{i=1}^n(x-x_i),\]
其中 $a\ne0$, $n\geqslant3$, $x_1<x_2<\cdots<x_n$,求导得
\[f'(x)=a\prod_{i=1}^n(x-x_i)\sum_{i=1}^n\frac1{x-x_i},\]
(注:这里虽然出现了分式,但只是为了形式上好表示,实际上都是多项式,所以这里不必考虑分母是否为零的情况)
设自 $(x_1,0)$ 引 $f(x)$ 的切线与 $f(x)$ 相切于 $(x_*,f(x_*))$ 且 $x_*\ne x_1$,则该切线方程为
\[y=a\prod_{i=1}^n(x_*-x_i)\sum_{i=1}^n\frac1{x_*-x_i}\cdot (x-x_*)+a\prod_{i=1}^n(x_*-x_i),\]
因为切线过 $(x_1,0)$,故
\begin{align*}
0&=a\prod_{i=1}^n(x_*-x_i)\sum_{i=1}^n\frac1{x_*-x_i}\cdot (x_1-x_*)+a\prod_{i=1}^n(x_*-x_i) \\
& =a\prod_{i=1}^n(x_*-x_i)\left( \sum_{i=2}^n\frac1{x_*-x_i}\cdot (x_1-x_*)-1 \right)+a\prod_{i=1}^n(x_*-x_i) \\
& =a(x_1-x_*)^2\prod_{i=2}^n(x_*-x_i)\sum_{i=2}^n\frac1{x_*-x_i},
\end{align*}
即得
\[\prod_{i=2}^n(x_*-x_i)\sum_{i=2}^n\frac1{x_*-x_i}=0.\]

当 $n=3$,上式为 $(x_*-x_2)+(x_*-x_3)=0$,得到中点的结论;
当 $n=4$,上式为 $(x_*-x_2)(x_*-x_3)+(x_*-x_3)(x_*-x_4)+(x_*-x_4)(x_*-x_2)=0$;
当 $n=5$,上式为 $(x_*-x_2)(x_*-x_3)(x_*-x_4)+(x_*-x_3)(x_*-x_4)(x_*-x_5)+(x_*-x_4)(x_*-x_5)(x_*-x_2)+(x_*-x_5)(x_*-x_2)(x_*-x_3)=0$;
……

84

Threads

2339

Posts

110K

Credits

Credits
13091

Show all posts

其妙 Posted 2013-8-19 16:46
回复 6# kuing
这个结论还算比较优美

1

Threads

20

Posts

122

Credits

Credits
122

Show all posts

aipotuo Posted 2013-9-26 13:26
有成为自招题的潜质.

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2013-9-27 19:48
奇妙的三点共线!奇妙之处不言而喻!
搜狗截图_2013-09-19_18-00-04.jpg

458

Threads

951

Posts

9832

Credits

Credits
9832

Show all posts

青青子衿 Posted 2014-1-24 16:48
回复 9# 青青子衿
奇妙的三点共线!奇妙之处不言而喻!
青青子衿 发表于 2013-9-27 19:48
三次函数图像上任取两点$A、B$,两点投影到$x$轴上的中点所对的三次函数图像上点的切线交图像于$C$点,$A、B、C$三点共线

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

 Author| kuing Posted 2014-1-24 17:07
回复 10# 青青子衿

这跟1#的结论在本质上相同。

7

Threads

127

Posts

874

Credits

Credits
874

Show all posts

第一章 Posted 2015-7-25 18:00
贴一段群聊记录
【LV6】江苏无锡王举(*********)  16:58:08
已知三次函数y=f(x)与直线y=a依次交与A,B,C三个交点,过A作三次的切线,切点为D(不同于A),则D点横坐标=B点横+C点横!!这个性质怎么证明
【LV5】吉林敦化齐一琳(9*********)  16:59:01
王老师编的题吧
【LV6】江苏无锡王举(*********)  17:00:16
不是题额,三次函数的一个性质
【LV4】广东中山邓龙(*********)  17:09:55
先把三次函数的对称中心移到原点,计算更简单
【LV6】江苏无锡王举(*********)  17:11:41
@广东中山邓龙 秒懂,多谢邓老师

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-5-11 23:00

三次函数上三个共线的点作切线与曲线的交点共线

en.wikipedia.org/wiki/Cubic_function#Collinearities
The tangent lines to the graph of a cubic function at three collinear points intercept the cubic again at collinear points. This can be seen as follows.

As this property is invariant under a rigid motion, one may suppose that the function has the form
$$f(x)=x^3+px$$
If $α$ is a real number, then the tangent to the graph of $f$ at the point $(α,f(α))$ is the line
$$(x,f(α)+(x−α)f'(α)):x∈\Bbb R$$
So, the intersection point between this line and the graph of $f$ can be obtained solving the equation $f(x)=f(α)+(x−α)f'(α)$, that is
$$x^3+px=\alpha^3+p\alpha+ (x-\alpha)(3\alpha^2+p),$$
which can be rewritten
$$x^3 - 3\alpha^2 x +2\alpha^3=0,$$
and factorized as
$$(x-\alpha)^2(x+2\alpha)=0.$$
So, the tangent intercepts the cubic at
$$(-2\alpha, -8\alpha^3-2p\alpha)=(-2\alpha, -8f(\alpha)+6p\alpha).$$
So, the function that maps a point $(x,y)$ of the graph to the other point where the tangent intercepts the graph is
$$(x,y)\mapsto (-2x, -8y+6px).$$
This is an affine transformation that transforms collinear points into collinear points. This proves the claimed result.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-8-12 23:04

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2022-8-12 23:15
kuing 发表于 2013-8-17 07:52
虽然不能推广,但最后得到的方程还是蛮好看的。


由$$\prod_{i=2}^n(x_*-x_i)\sum_{i=2}^n\frac1{x_*-x_i}=0.$$知$$\sum_{i=2}^n\log(x-x_i).$$在$x=x_*$处取极小值.
即$$F(x)=\prod_{i=2}^n(x-x_i).$$在$x=x_*$处取极小值.

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit