Forgot password
 Register account
View 4192|Reply 15

[函数] 来自人教群的一道三次曲线零点切线的美妙结论

[Copy link]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-8-13 23:40 |Read mode
Last edited by hbghlyj 2025-5-4 11:21若三次曲线 $f(x)=a x^3+b x^2+c x+d(a \neq 0)$ 与 $x$轴有三个不同交点,依次为 $A, B, C$,自点 $A, C$ 分别引曲线 $f(x)$ 的切线,切点分别为 $D, E$,则点 $D, E$ 在 $x$ 轴上的射影分别为线段 $B C, A B$ 的中点.

依题意设 $f(x)=a(x-p)(x-q)(x-r)$,其中 $p<q<r$,则
\[f'(x)=a\bigl((x-p)(x-q)+(x-q)(x-r)+(x-r)(x-p)\bigr),\]
设自 $(p,0)$ 引 $f(x)$ 的切线与 $f(x)$ 相切于 $(s,f(s))$ 且 $s\ne p$,则该切线方程为
\[y=a\bigl((s-p)(s-q)+(s-q)(s-r)+(s-r)(s-p)\bigr)(x-s)+a(s-p)(s-q)(s-r),\]
因为切线过 $(p,0)$,故
\[0=a\bigl((s-p)(s-q)+(s-q)(s-r)+(s-r)(s-p)\bigr)(p-s)+a(s-p)(s-q)(s-r),\]
化简即得
\[0=(s-q)+(s-r).\]

Comment

三次方程Vieta定理$x_A+x_B+x_C=-\frac ba=x_E+x_E+x_C$  posted 2025-5-4 11:13

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2013-8-14 18:11
还有这事儿

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2013-8-14 21:34
回复 2# isee

嗯,所以我佩服发现者,虽然证明不费吹灰之力。

PS、可惜这结论只在三次函数成立,不能推广到更高次,四次就不行。

12

Threads

54

Posts

0

Reputation

Show all posts

shidilin posted 2013-8-15 22:55
貌似二次,三次函数的对称性,也不能很优美地推广。

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-8-17 13:29
回复  isee

嗯,所以我佩服发现者,虽然证明不费吹灰之力。

PS、可惜这结论只在三次函数成立,不能推广 ...
kuing 发表于 2013-8-14 21:34

    要不然kk又可以搞一个推广了

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2013-8-17 14:52
虽然不能推广,但最后得到的方程还是蛮好看的。


\[f(x)=a\prod_{i=1}^n(x-x_i),\]
其中 $a\ne0$, $n\geqslant3$, $x_1<x_2<\cdots<x_n$,求导得
\[f'(x)=a\prod_{i=1}^n(x-x_i)\sum_{i=1}^n\frac1{x-x_i},\]
(注:这里虽然出现了分式,但只是为了形式上好表示,实际上都是多项式,所以这里不必考虑分母是否为零的情况)
设自 $(x_1,0)$ 引 $f(x)$ 的切线与 $f(x)$ 相切于 $(x_*,f(x_*))$ 且 $x_*\ne x_1$,则该切线方程为
\[y=a\prod_{i=1}^n(x_*-x_i)\sum_{i=1}^n\frac1{x_*-x_i}\cdot (x-x_*)+a\prod_{i=1}^n(x_*-x_i),\]
因为切线过 $(x_1,0)$,故
\begin{align*}
0&=a\prod_{i=1}^n(x_*-x_i)\sum_{i=1}^n\frac1{x_*-x_i}\cdot (x_1-x_*)+a\prod_{i=1}^n(x_*-x_i) \\
& =a\prod_{i=1}^n(x_*-x_i)\left( \sum_{i=2}^n\frac1{x_*-x_i}\cdot (x_1-x_*)-1 \right)+a\prod_{i=1}^n(x_*-x_i) \\
& =a(x_1-x_*)^2\prod_{i=2}^n(x_*-x_i)\sum_{i=2}^n\frac1{x_*-x_i},
\end{align*}
即得
\[\prod_{i=2}^n(x_*-x_i)\sum_{i=2}^n\frac1{x_*-x_i}=0.\]

当 $n=3$,上式为 $(x_*-x_2)+(x_*-x_3)=0$,得到中点的结论;
当 $n=4$,上式为 $(x_*-x_2)(x_*-x_3)+(x_*-x_3)(x_*-x_4)+(x_*-x_4)(x_*-x_2)=0$;
当 $n=5$,上式为 $(x_*-x_2)(x_*-x_3)(x_*-x_4)+(x_*-x_3)(x_*-x_4)(x_*-x_5)+(x_*-x_4)(x_*-x_5)(x_*-x_2)+(x_*-x_5)(x_*-x_2)(x_*-x_3)=0$;
……

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-8-19 16:46
回复 6# kuing
这个结论还算比较优美

1

Threads

20

Posts

0

Reputation

Show all posts

aipotuo posted 2013-9-26 13:26
有成为自招题的潜质.

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2013-9-27 19:48
奇妙的三点共线!奇妙之处不言而喻!
搜狗截图_2013-09-19_18-00-04.jpg

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2014-1-24 16:48
回复 9# 青青子衿
奇妙的三点共线!奇妙之处不言而喻!
青青子衿 发表于 2013-9-27 19:48
三次函数图像上任取两点$A、B$,两点投影到$x$轴上的中点所对的三次函数图像上点的切线交图像于$C$点,$A、B、C$三点共线

673

Threads

110K

Posts

218

Reputation

Show all posts

original poster kuing posted 2014-1-24 17:07
回复 10# 青青子衿

这跟1#的结论在本质上相同。

7

Threads

127

Posts

0

Reputation

Show all posts

第一章 posted 2015-7-25 18:00
贴一段群聊记录
【LV6】江苏无锡王举(*********)  16:58:08
已知三次函数y=f(x)与直线y=a依次交与A,B,C三个交点,过A作三次的切线,切点为D(不同于A),则D点横坐标=B点横+C点横!!这个性质怎么证明
【LV5】吉林敦化齐一琳(9*********)  16:59:01
王老师编的题吧
【LV6】江苏无锡王举(*********)  17:00:16
不是题额,三次函数的一个性质
【LV4】广东中山邓龙(*********)  17:09:55
先把三次函数的对称中心移到原点,计算更简单
【LV6】江苏无锡王举(*********)  17:11:41
@广东中山邓龙 秒懂,多谢邓老师

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-5-11 23:00

三次函数上三个共线的点作切线与曲线的交点共线

en.wikipedia.org/wiki/Cubic_function#Collinearities
The tangent lines to the graph of a cubic function at three collinear points intercept the cubic again at collinear points. This can be seen as follows.

As this property is invariant under a rigid motion, one may suppose that the function has the form
$$f(x)=x^3+px$$
If $α$ is a real number, then the tangent to the graph of $f$ at the point $(α,f(α))$ is the line
$$(x,f(α)+(x−α)f'(α)):x∈\Bbb R$$
So, the intersection point between this line and the graph of $f$ can be obtained solving the equation $f(x)=f(α)+(x−α)f'(α)$, that is
$$x^3+px=\alpha^3+p\alpha+ (x-\alpha)(3\alpha^2+p),$$
which can be rewritten
$$x^3 - 3\alpha^2 x +2\alpha^3=0,$$
and factorized as
$$(x-\alpha)^2(x+2\alpha)=0.$$
So, the tangent intercepts the cubic at
$$(-2\alpha, -8\alpha^3-2p\alpha)=(-2\alpha, -8f(\alpha)+6p\alpha).$$
So, the function that maps a point $(x,y)$ of the graph to the other point where the tangent intercepts the graph is
$$(x,y)\mapsto (-2x, -8y+6px).$$
This is an affine transformation that transforms collinear points into collinear points. This proves the claimed result.

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-8-12 23:04

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2022-8-12 23:15
kuing 发表于 2013-8-17 07:52
虽然不能推广,但最后得到的方程还是蛮好看的。


由$$\prod_{i=2}^n(x_*-x_i)\sum_{i=2}^n\frac1{x_*-x_i}=0.$$知$$\sum_{i=2}^n\log(x-x_i).$$在$x=x_*$处取极小值.
即$$F(x)=\prod_{i=2}^n(x-x_i).$$在$x=x_*$处取极小值.

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:17 GMT+8

Powered by Discuz!

Processed in 0.015836 seconds, 27 queries