Forgot password?
 Register account
View 295|Reply 2

[不等式] 求证一个三角不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2023-4-14 15:47 |Read mode
Last edited by lemondian 2023-4-14 20:52在$\triangle ABC$中,$a,b,c$是$\triangle ABC$对应的边,$m,n\inR$,且$m>0,n\geqslant 1$  ,证明或否定:$a^m\cos^n\frac{A}{2}+b^m\cos^n\frac{B}{2}+c^m\cos^n\frac{C}{2}\leqslant (\frac{\sqrt{3}}{2})^n(a^m+b^m+c^m)$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-4-14 18:24
lemondian 发表于 2023-4-14 15:47
在$\triangle ABC$中,$a,b,c$是$\triangle ABC$对应的边,$m,n\inR$,且$m>0,n\geqslant 1$  ,证明:$a^m\cos^n\frac{A}{2}+b^m\cos^n\frac{B}{2}+c^m\cos^n\frac{C}{2}\leqslant (\frac{\sqrt{3}}{2})^n(a^m+b^m+c^m)$
如果是你自己想出来的问题,但自己也未能肯定它成立,那后面不应该写“证明”而应该写“证明或否定”或者“猜想”。

在我考虑极端情形后发现不等式并不成立,反例如下:

当 `a=b=1`, `c\to2` 时 `A=B\to0`, `C\to\pi`,此时 `\LHS\to2`, `\RHS\to(\frac{\sqrt3}2)^n(2+2^m)`,由于 `\frac{\sqrt3}2\in(0,1)`,那么当 `n` 比较大时,右边一定小于左边。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2023-4-14 20:52
kuing 发表于 2023-4-14 18:24
如果是你自己想出来的问题,但自己也未能肯定它成立,那后面不应该写“证明”而应该写“证明或否定”或者 ...
已改

Mobile version|Discuz Math Forum

2025-5-31 10:39 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit