Forgot password?
 Register account
View 290|Reply 7

[几何] 正方体截面

[Copy link]

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

guanmo1 Posted 2023-4-14 19:55 |Read mode
求证:给定正方体的任意截面中,体对角面的面积最大。

Comment

一般的定理非常优雅:n维空间的超立方体,当超平面的法向量为(1/√2,1/√2,0,0,…,0)时,截面积最大,为$\sqrt{2}$。  Posted 2023-4-15 05:52
二维,是正方形的对角线😁  Posted 2023-4-15 05:54

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 20:10
mathoverflow.net/questions/247882  the maximal area is $\sqrt{2}$
it is attained only if the hyperplane has a normal unit vector with two nonzero coordinates with absolute value $1/\sqrt2$
As far as I know this is Ball's theorem. Fedja wrote a simple proof once many years ago math.spbu.ru/analysis/f-doska/cube.pdf
$type Pooley2012.pdf (635.45 KB, Downloads: 40)
main-qimg-6e26df07c40967f380a5e25eb39aae29-pjlq[1].jpg

Comment

是不是有个结论:正方体在面上的投影的面积大小等于该面的法向量的什么值?渣某不记得了,或者记错了。  Posted 2023-4-15 20:59

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2023-4-14 21:10
谢谢您。求初等证明。

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-14 22:57
mathoverflow.net/questions/430553/
Let $1<n\in\mathbb N,$ $S(n)$ is the greatest $(n-1)$-area of $L\cap I^n$ where $I^n\subseteq\mathbb R^n$ is the unit cube, and $L$ runs over all possible affine $(n-1)$-hyperplanes.

For all $n>1$, $S(n)=\sqrt2$, it is a result of Keith Ball
PDF K. M. Ball. Cube slicing in Rn. Proc Amer Math Soc 97:3 (1986), pp. 465-473

187

Threads

206

Posts

2155

Credits

Credits
2155

Show all posts

 Author| guanmo1 Posted 2023-4-15 09:10
hbghlyj 发表于 2023-4-15 05:43
https://www.zhihu.com/question/389872846
https://www.zhihu.com/question/490004301/answer/2798990583
...

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit