Forgot password?
 Register account
View 314|Reply 2

[几何] 关于$y=x$对称的抛物线与双曲线相切于2点

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-15 00:18 |Read mode
Last edited by hbghlyj 2023-4-16 23:05$\sqrt x+\sqrt y=1$与$(x-a)(y-a)=b,x>a>0,b>0$相切,切点必须在 $y=x$ 上.

若它们相切于关于 $y=x$ 对称的2点,则$b=-a$,不符合$a>0,b>0$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-17 05:39
交点为$(x,y)$
  1. f = Resultant[1 - 2 x + x^2 - 2 y - 2 x y + y^2, -b + (-a + x) (-a + y), y]
Copy the Code
消去$y$得到关于$x$的四次多项式,若抛物线与双曲线在2点处相切,则它有2个二重根,令它$=(x-p)^2(x-q)^2$.
  1. Eliminate[Thread[CoefficientList[f-(x-p)^2(x-q)^2,x]==0],{p,q}]
Copy the Code
输出 b==-a
Untitled.gif

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-17 06:33
一般地, “抛物线与双曲线内切于2点, 则抛物线在内侧” 对吗?
  1. Export["1.png",ContourPlot[{1/9 (13/4+x)^2-y^2==1,x==y^2},{x,-1,2.34375`},{y,-1.39754`,1.39754`},AspectRatio->Automatic,PlotLegends->"Expressions"]]
Copy the Code
1.png

Mobile version|Discuz Math Forum

2025-5-31 11:02 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit