|
「ICPC 2013 杭州赛区」Problem of Apollonius
题目大意
求过两圆外一点,且与两圆相切的所有的圆。
解法
首先考虑解析几何解法,似乎很难求解。
考虑以需要经过的点为反演中心进行反演(反演半径任意),所求的圆的反演图形是一条直线,且与题目给出两圆的反演图形相切。
于是题目经过反演变换后转变为:求两圆的所有公切线。
求出公切线后,反演回原平面即可。
- #include <algorithm>
- #include <cmath>
- #include <cstdio>
- #include <cstring>
- #include <iostream>
- #include <vector>
- using namespace std;
- const double EPS = 1e-8; // 精度系数
- const double PI = acos(-1.0); // π
- const int N = 4;
- struct Point {
- double x, y;
- Point(double x = 0, double y = 0) : x(x), y(y) {}
- const bool operator<(Point A) const { return x == A.x ? y < A.y : x < A.x; }
- }; // 点的定义
- typedef Point Vector; // 向量的定义
- Vector operator+(Vector A, Vector B) {
- return Vector(A.x + B.x, A.y + B.y);
- } // 向量加法
- Vector operator-(Vector A, Vector B) {
- return Vector(A.x - B.x, A.y - B.y);
- } // 向量减法
- Vector operator*(Vector A, double p) {
- return Vector(A.x * p, A.y * p);
- } // 向量数乘
- Vector operator/(Vector A, double p) {
- return Vector(A.x / p, A.y / p);
- } // 向量数除
- int dcmp(double x) {
- if (fabs(x) < EPS)
- return 0;
- else
- return x < 0 ? -1 : 1;
- } // 与0的关系
- double Dot(Vector A, Vector B) { return A.x * B.x + A.y * B.y; } // 向量点乘
- double Length(Vector A) { return sqrt(Dot(A, A)); } // 向量长度
- double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; } // 向量叉乘
- Point GetLineProjection(Point P, Point A, Point B) {
- Vector v = B - A;
- return A + v * (Dot(v, P - A) / Dot(v, v));
- } // 点在直线上投影
- struct Circle {
- Point c;
- double r;
- Circle() : c(Point(0, 0)), r(0) {}
- Circle(Point c, double r = 0) : c(c), r(r) {}
- Point point(double a) {
- return Point(c.x + cos(a) * r, c.y + sin(a) * r);
- } // 输入极角返回点坐标
- }; // 圆
- // a[i] 和 b[i] 分别是第i条切线在圆A和圆B上的切点
- int getTangents(Circle A, Circle B, Point* a, Point* b) {
- int cnt = 0;
- if (A.r < B.r) {
- swap(A, B);
- swap(a, b);
- }
- double d2 =
- (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
- double rdiff = A.r - B.r;
- double rsum = A.r + B.r;
- if (dcmp(d2 - rdiff * rdiff) < 0) return 0; // 内含
- double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
- if (dcmp(d2) == 0 && dcmp(A.r - B.r) == 0) return -1; // 无限多条切线
- if (dcmp(d2 - rdiff * rdiff) == 0) { // 内切,一条切线
- a[cnt] = A.point(base);
- b[cnt] = B.point(base);
- ++cnt;
- return 1;
- }
- // 有外公切线
- double ang = acos(rdiff / sqrt(d2));
- a[cnt] = A.point(base + ang);
- b[cnt] = B.point(base + ang);
- ++cnt;
- a[cnt] = A.point(base - ang);
- b[cnt] = B.point(base - ang);
- ++cnt;
- if (dcmp(d2 - rsum * rsum) == 0) { // 一条内公切线
- a[cnt] = A.point(base);
- b[cnt] = B.point(PI + base);
- ++cnt;
- } else if (dcmp(d2 - rsum * rsum) > 0) { // 两条内公切线
- double ang = acos(rsum / sqrt(d2));
- a[cnt] = A.point(base + ang);
- b[cnt] = B.point(PI + base + ang);
- ++cnt;
- a[cnt] = A.point(base - ang);
- b[cnt] = B.point(PI + base - ang);
- ++cnt;
- }
- return cnt;
- } // 两圆公切线 返回切线的条数,-1表示无穷多条切线
- Circle Inversion_C2C(Point O, double R, Circle A) {
- double OA = Length(A.c - O);
- double RB = 0.5 * ((1 / (OA - A.r)) - (1 / (OA + A.r))) * R * R;
- double OB = OA * RB / A.r;
- double Bx = O.x + (A.c.x - O.x) * OB / OA;
- double By = O.y + (A.c.y - O.y) * OB / OA;
- return Circle(Point(Bx, By), RB);
- } // 点 O 在圆 A 外,求圆 A 的反演圆 B,R 是反演半径
- Circle Inversion_L2C(Point O, double R, Point A, Vector v) {
- Point P = GetLineProjection(O, A, A + v);
- double d = Length(O - P);
- double RB = R * R / (2 * d);
- Vector VB = (P - O) / d * RB;
- return Circle(O + VB, RB);
- } // 直线反演为过 O 点的圆 B,R 是反演半径
- bool theSameSideOfLine(Point A, Point B, Point S, Vector v) {
- return dcmp(Cross(A - S, v)) * dcmp(Cross(B - S, v)) > 0;
- } // 返回 true 如果 A B 两点在直线同侧
- int main() {
- int T;
- scanf("%d", &T);
- while (T--) {
- Circle A, B;
- Point P;
- scanf("%lf%lf%lf", &A.c.x, &A.c.y, &A.r);
- scanf("%lf%lf%lf", &B.c.x, &B.c.y, &B.r);
- scanf("%lf%lf", &P.x, &P.y);
- Circle NA = Inversion_C2C(P, 10, A);
- Circle NB = Inversion_C2C(P, 10, B);
- Point LA[N], LB[N];
- Circle ansC[N];
- int q = getTangents(NA, NB, LA, LB), ans = 0;
- for (int i = 0; i < q; ++i)
- if (theSameSideOfLine(NA.c, NB.c, LA[i], LB[i] - LA[i])) {
- if (!theSameSideOfLine(P, NA.c, LA[i], LB[i] - LA[i])) continue;
- ansC[ans++] = Inversion_L2C(P, 10, LA[i], LB[i] - LA[i]);
- }
- printf("%d\n", ans);
- for (int i = 0; i < ans; ++i) {
- printf("%.8f %.8f %.8f\n", ansC[i].c.x, ansC[i].c.y, ansC[i].r);
- }
- }
- return 0;
- }
Copy the Code 练习
「ICPC 2017 南宁赛区网络赛」Finding the Radius for an Inserted Circle
「CCPC 2017 网络赛」The Designer |
|