Forgot password?
 Register account
View 258|Reply 1

[数列] 多项式$P_n$的恒等式

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-16 01:18 |Read mode
Last edited by hbghlyj 2024-3-26 14:06对$n = 0, 1, 2, 3...,$ 设$P_n(x)=\dfrac{1}{2^{n} n !} \dfrac{d^{n}}{d x^{n}}\left(x^{2}-1\right)^{n}$
求证$$\sum_{k=0}^n(-1)^k e^{(n-2k)i\theta}=\sum _{\ell =0}^{n}P_{\ell }(\cos \theta )P_{n-\ell }(\cos \theta ).$$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2024-3-26 22:02
令$x=\cos\theta$, 左边变成:
$$\sum_{k=0}^n(-1)^k e^{(n-2k)i\theta}=\sum_{k=0}^{\lfloor n/2\rfloor}(-1)^k2\cos((n-2k)\theta)\quad\big\{-(-1)^k\text{ if }2|n\big\}$$
$P_n$代入右边,$$\sum _{\ell =0}^{n}P_{\ell }(x)P_{n-\ell }(x)=\frac1{2^{2n}n!}\sum _{\ell =0}^{n}\binom n\ell \frac{d^\ell}{d x^\ell}\left(x^{2}-1\right)^\ell\frac{d^{n-\ell}}{d x^{n-\ell}}\left(x^{2}-1\right)^{n-\ell}$$
然后如何处理

Mobile version|Discuz Math Forum

2025-5-31 11:13 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit