Forgot password?
 Register account
View 180|Reply 2

[几何] 关于x轴对称的2条双曲线内切于2点,则内侧的离心率较小

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-17 06:20 |Read mode
Last edited by hbghlyj 2023-4-17 09:41双曲线$$\frac{x^2}{a_1^2}-\frac{y^2}{b_1^2}=1,\quad a_1>0,b_1>0$$与双曲线$$\frac{(x-s)^2}{a_2^2}-\frac{y^2}{b_2^2}=1,\quad s<0,a_2>0,b_2>0$$相切于$(u,±v),u>0$. 求证$$\frac{a_1}{b_1}<\frac{a_2}{b_2}$$
一点想法: 画图发现, 第2条双曲线在内侧, 所以渐近线倾角$\tan^{-1}\frac ba$较小喽?
极限情况: 抛物线与双曲线内切于2点,则抛物线在内侧

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-17 06:25
Last edited by hbghlyj 2023-4-17 08:59当$a_1=b_1=1$时
  1. Resultant[x^2 - y^2 - 1, (x - s)^2/a^2 - y^2/b^2 - 1, y]
Copy the Code
是关于$x$的四次多项式$\frac{\left(\left(a^2-b^2\right)x^2+2 b^2 s x+a^2 b^2-a^2-b^2 s^2\right)^2}{a^4 b^4}$具有四重根$x=u$
因此$\left(a^2-b^2\right)x^2+2 b^2 s x+a^2 b^2-a^2-b^2 s^2$具有二重根$x=u$
两根之和$=-\frac{2b^2 s}{a^2-b^2}$
即$u=-\frac{b^2 s}{a^2-b^2}$
令$u>0$, 由$s<0$得$a>b$, 即$\frac{a_1}{b_1}<\frac{a_2}{b_2}$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-4-17 15:59
一般情况呢?
对椭圆成立吗?

Mobile version|Discuz Math Forum

2025-5-31 11:20 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit