Forgot password?
 Register account
View 368|Reply 4

[几何] 三角形中的角

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2023-4-18 12:20 |Read mode
Last edited by 力工 2023-4-18 21:41如图,点$P$是正$\triangle ABC$内的一点,$D,E,E$分别为$BC,CA,AB$边上的动点,若$\angle AEP=\angle BFP=\angle CDP=\alpha $,求$\tan\alpha $的值.
抱歉,偷偷看了结果,原来有条件:$BD=xBC,CE=yCB,AF=zAB$.
640.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-4-18 14:09
`\alpha` 无法确定吧?是不是还有别的条件?

Comment

谢谢,原来题目里还应该有个比例,居然题中没给,在解题过程中用了。  Posted 2023-4-18 21:42

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-4-19 02:47
不难,作辅助线如下图所示:
捕获.PNG
不失一般性,设正 $\triangle ABC$ 边长为 `1`,记 `P` 到三边距离分别为 `PG=a`, `PH=b`, `PI=c`,则有
\[GB=x+DG=x+a\cot\alpha,\]
另一方面又有
\[GB=PJ+\frac a{\sqrt3}=\frac{2c+a}{\sqrt3},\]
于是得到
\[x=\frac{2c+a}{\sqrt3}-a\cot\alpha,\]
同理有
\begin{align*}
y&=\frac{2a+b}{\sqrt3}-b\cot\alpha,\\
z&=\frac{2b+c}{\sqrt3}-c\cot\alpha,
\end{align*}
三式相加得
\[x+y+z=\bigl(\sqrt3-\cot\alpha\bigr)(a+b+c),\]
而由面积关系显然有
\[a+b+c=2S=\frac{\sqrt3}2,\]
所以
\[\cot\alpha=\sqrt3-\frac2{\sqrt3}(x+y+z).\]

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 很有用!

View Rating Log

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

 Author| 力工 Posted 2023-4-19 15:58
再上一题:
在$\triangle ABC$中,$AB\perp AC,AB=AC=12,D$为$BC$的中点,$E,F$为$AB,AC$上的动点,且$\angle AEF=2\angle CDF$,求四边形$BDFE$的面积.
640 (1).png

Mobile version|Discuz Math Forum

2025-5-31 11:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit