Forgot password?
 Register account
View 543|Reply 5

[几何] 证明共圆

[Copy link]

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

Ly-lie Posted 2023-4-23 21:24 |Read mode
如图,已知$AP$和$AQ$分别是$\triangle ABC$的高线和陪位中线(即中线的等角线),$P,Q$都在外接圆上,$D$是$B$到$AC$的垂足,$E$是$C$到$AB$的垂足,求证:$D,E,P,Q$四点共圆.
屏幕截图 2023-04-23 211724.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2023-4-27 13:35
Last edited by 乌贼 2023-4-27 15:34 211.png
$ M $为$ DE $与$ CB $交点,$ N $为$ BC $中点,先证明$ DEFN $四点共圆及$ PFNQ $四点共圆。再证$ ANPM $四点共圆。然后$ MPQ $三点共线即可。过程复杂不写了。

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2023-4-27 19:45

126

Threads

430

Posts

3152

Credits

Credits
3152

Show all posts

TSC999 Posted 2023-4-27 21:20
Last edited by TSC999 2023-4-29 10:47使用复平面上的解析几何公式做这种题,是非常容易的。
证明 EFPQ 共圆程序及结果.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2023-4-27 22:58
Last edited by 乌贼 2023-4-28 00:25写一下
证明$ EDNF $及$ ANPM $四点共圆 212.png
易证\[ HF=PF \]由\[ \angle MEF=2\angle BEF=2\angle ACN=\angle DNF \]得$ EDNF $四点共圆,有\[ \angle DNF=\angle MEF \]又\[ \angle EFM=\angle NFD \]所以\[ \triangle MEF\sim \triangle DNF\riff DF\cdot EF=MF\cdot NF \]再由\[ \triangle AEF\sim \triangle DHF\riff DF\cdot EF=HF\cdot AF=PF\cdot AF=MF\cdot NF\riff \triangle AFN\sim \triangle MFP\riff\angle FAN=\angle FMP \]即$ ANPM $四点共圆


再证$ FNQP $四点共圆
213.png
   由\[ KN\cdot KO=KB^2=KQ\cdot KA \]得$ AONQ $四点共圆,有\[ \angle QNK=\angle QAO=\angle AQO=\angle ANO\riff\angle ANB=\angle QNB \]又$ O $为圆心且$ AP\px OK $得\[ \angle PQN=\angle PQA+\angle AQN=\angle PQA+\angle AOG=90\du  \]即$ PFNQ $四点共圆,知\[ \angle FNQ+\angle FPQ=180\du  =\angle ANB+\angle FPQ\]又$ ANPM $四点共圆,有\[ \angle ANM=\angle APM \riff\angle APM+\angle APQ=180\du \]也就是$ MPQ $三点共线
211.png
综上有\[ ME\cdot MD=MF\cdot MN=MP\cdot MQ \]即有$ EDQP $四点共圆

6

Threads

55

Posts

814

Credits

Credits
814

Show all posts

 Author| Ly-lie Posted 2023-4-28 20:24
Last edited by Ly-lie 2023-4-28 20:37
乌贼 发表于 2023-4-27 22:58
写一下
证明$ EDNF $及$ ANPM $四点共圆
易证\[ HF=PF \]由\[ \angle MEF=2\angle BEF=2\angle ACN=\angle  ...
我发现这题也可以以$A$为中心反演加上九点圆定理来证,比较简单就不写了

Mobile version|Discuz Math Forum

2025-5-31 11:23 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit