Forgot password?
 Register account
View 173|Reply 1

$ℝℙ^2$上的射影变换 轮换3个点

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-4-26 04:43 |Read mode
$τ$是$ℝℙ^1$上的射影变换.
若$a=τ^3(a)$,且$a,τ(a),τ^2(a)$是3个不同的点,则$τ^3=\text{id}$.
证明
易知$a,τ(a),τ^2(a)$是$τ^3$的不动点.
$τ^3$是$ℝℙ^1$上的射影变换有3个不动点则$τ^3=\text{id}$.
例如$τ:[x,y]↦[x-y,x]$
我们有$τ[0,1]=[1,0], \quad τ[1,0]=[1,1], \quad τ[1,1]=[0,1]$.


把$ℝℙ^1$换成$ℝℙ^2$还成立吗

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-14 08:10
Last edited by hbghlyj 2024-3-26 21:27$\mathbb{RP}^2$上,$a=τ^3(a)$,且$a,τ(a),τ^2(a)$是3个不同的点,则$\tau^3=\text{id}$不一定成立。
math.stackexchange.com/questions/1657134/

Mobile version|Discuz Math Forum

2025-5-31 11:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit