Forgot password
 Register account
View 162|Reply 3

[几何] $ℝ^2$最多4个两两相切的圆

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-4-26 19:50 |Read mode
Last edited by hbghlyj 2023-4-27 12:39$\mathbb R^2$存在4个两两相切的圆

如何证明$\mathbb R^2$不存在5个两两相切的圆

$\mathbb R^3$是否存在5个两两相切(不共面)的圆两圆相切是指它们在该点具有相同的切线

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-4-27 02:12
Last edited by hbghlyj 2024-5-8 09:22一个三棱柱,底面是正三角形,侧面是正方形,画出每个面的内切圆,这5个圆(除了底面的2个圆外)两两相切底面的2个圆不相切 (鼠标可旋转视角)

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-4-27 13:53
Last edited by Czhang271828 2023-4-27 16:24论坛原帖见楼下.
-----------------------------
平面内, 与任意"三个两两相切的圆"均相切的圆有且仅有两个, 而且半径都能算出是
\[
r_4^{-1}=r_1^{-1}+r_2^{-1}+r_3^{-1}\pm 2\sqrt{r_1^{-1}r_2^{-1}+r_2^{-1}r_3^{-1}+r_1^{-1}r_3^{-1}}.
\]
这样一来, 刚好是里面和外面的两个, 所有不可能有五个两两相切的圆存在.

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-4-27 15:07
Czhang271828 发表于 2023-4-27 06:53
平面内, 与任意"三个两两相切的圆"均相切的圆有且仅有两个, 而且半径都能算出是
\[
r_1+r_2+r_3\pm 2\sqrt{ ...
forum.php?mod=viewthread&tid=3818

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 15:32 GMT+8

Powered by Discuz!

Processed in 0.012673 seconds, 25 queries