Forgot password
 Register account
View 2517|Reply 5

[不等式] 2√2 sin A+2√2 sinB+sinC的最大值

[Copy link]
转化与化归 posted 2013-11-26 15:07 |Read mode
Last edited by hbghlyj 2025-5-4 00:28已知△ABC三个内角分别为A,B,C,求$2\sqrt{2}\sin(a)+2\sqrt{2}\sin(b)+\sin(c)$的最大值

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-11-26 15:21
有两个系数相同应该很好办啊,和差化积放缩一下变成一元函数

24

Threads

1017

Posts

46

Reputation

Show all posts

战巡 posted 2013-11-26 15:38
这不难吧...
\[2\sqrt{2}\sin(a)+2\sqrt{2}\sin(b)+\sin(c)=2\sqrt{2}\sin(a)+2\sqrt{2}\sin(b)+\sin(a+b)\]
\[=4\sqrt{2}\sin(\frac{a+b}{2})\cos(\frac{a-b}{2})+\sin(a+b)\]
\[\le 4\sqrt{2}\sin(\frac{a+b}{2})+\sin(a+b)\le \sqrt{13+16\sqrt{2}}\]
后面那个过程我懒得写了,导数神马的很容易弄出来

84

Threads

2340

Posts

4

Reputation

Show all posts

其妙 posted 2013-11-27 13:27
人教里有一般结论吧?

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2013-11-27 13:50
original poster 转化与化归 posted 2013-11-27 15:39
回复 5# kuing
一般方法有了就好办了!

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 08:08 GMT+8

Powered by Discuz!

Processed in 0.013029 seconds, 23 queries