Forgot password
 Register account
View 139|Reply 4

[几何] $ℝ^2$最多3个两两正交的圆

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-4-27 15:17 |Read mode
两圆
\[
x^2+y^2+2gx+2fy+c        =        0\]
\[x^2+y^2+2g'x+2f'y+c'        =        0
\]
正交,当且仅当
\[2gg'+2ff'=c+c'. \]

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-4-27 15:20
考虑3个互相正交的圆,以它们的根心可作圆与这3个圆都正交,这样就得到4个互相正交的圆。
MathWorld
If a circle with center $R$ cuts any one of the three circles orthogonally, it cuts all three orthogonally. This circle is called the orthogonal circle (or radical circle) of the system.

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-4-27 15:22
4个互相正交的圆,其中任选两个圆,因为它们正交所以相交,以它们的一个交点为中心进行反演,这两个圆反演为x轴和y轴,剩下2个圆的反形的方程,由于正交性,只能是$C_1:x^2+y^2=a^2$和$C_2:x^2+y^2=-a^2$,圆$C_2$是虚的,所以不存在4个两两正交的圆

这与2#矛盾了吗

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-4-27 16:56
没有矛盾因为2#的根心在3个圆的内部,以圆内一点为中心作正交圆,作出的圆是虚的

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-4-27 19:39
$ℝ^2$最多4个两两相切的圆、最多3个两两正交的圆
可以合并为:
$ℝ^2$最多有多少个交角为$α$的圆
$α=0,\pi$相切,$α=\fracπ2$正交

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:56 GMT+8

Powered by Discuz!

Processed in 0.011102 seconds, 22 queries