Forgot password?
 Register account
View 291|Reply 4

[不等式] 一组相关不等式

[Copy link]

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

lemondian Posted 2023-4-27 15:58 |Read mode
原题:已知实数满足$a+b+c=a^2+b^2+c^2=2$,求证:$a^3+b^3+c^3\leqslant \frac{22}{9}$。

拓展与变式:
已知实数满足$a+b+c=a^2+b^2+c^2=2。$证明:
(1)当$k\inN^+,且3\leqslant k\leqslant 16$时,$a^k+b^k+c^k\leqslant \frac{4^k+2}{3^k}$.
(2)当$k\inN^+,且3\leqslant k\leqslant 14$时,$a^k+b^k+c^k\geqslant 2$.
(3)当$k\inN^+,且k\geqslant 2$时,$2\leqslant ka^2+b^3+c^3\leqslant \dfrac{2(24k+1)}{27}$.
(4)当$k\inN^+$时,$2\leqslant ka^3+b^3+c^3\leqslant \dfrac{64k+1}{27}$.
(5)当$k\inN^+,且2\leqslant k\leqslant 7$时,$\frac{2\cdot 4^k+1}{9^k}\leqslant a^kb^k+b^kc^k+c^ka^k\leqslant 1$.

原题的多元推广:
已知实数$a_1,a_2,\cdots ,a_n$,满足$a_1+a_2+\cdots+a_n=a_1^2+a_2^2+\cdots +a_n^2=n-1$,求证:
$a_1^3+a_2^3+\cdots +a_n^3\leqslant n+1-\dfrac{6n-4}{n^2}$

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2023-4-27 21:33 From mobile phone
原题已会证,求助拓展与推广的证明

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2023-4-27 21:33 From mobile phone
原题已会证,求助拓展与推广的证明

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-4-27 22:02
高次或多元的,大概得出动 EV 定理之类的了:
emis.de/journals/JIPAM/images/059_06_JIPAM/059_06_www.pdf

k 的上限大概也是多余的。

413

Threads

905

Posts

110K

Credits

Credits
10989

Show all posts

 Author| lemondian Posted 2023-4-28 07:54
kuing 发表于 2023-4-27 22:02
高次或多元的,大概得出动 EV 定理之类的了:
https://www.emis.de/journals/JIPAM/images/059_06_JIPAM/05 ...
全英文?
kuing 帮证一下呗,谢谢了。

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit