Forgot password?
 Create new account
View 150|Reply 2

[函数] 二分法、线性插值法收敛到不同的根

[Copy link]

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

hbghlyj Posted at 2023-4-30 20:02:47 |Read mode
求一个函数$f(x)$, 用二分法线性插值法在区间$[a,b]$上求根都收敛, 但收敛到不同的根

hbghlyj 发表于 2023-4-30 12:06
Homework Q1.
Can you find a function $f(x)$ and an interval $[a,b]$ such that both the method of false position and the bisection method converge to roots of $f(x)$, but they converge to different roots?

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

 Author| hbghlyj Posted at 2023-4-30 20:14:59

失败的尝试

Last edited by hbghlyj at 2024-9-22 14:47:00

例如$f(x)=x^3-3x+1$在$[-2,2]$上的根为$x_1<0<x_2<x_3$
二分法$[-2,2]\to[-2,0]\to[-2,-1]\to[-2,-1.5]\to\dots$会收敛到$x_1$
线性插值法
$(-2, -1), (2, 3)\Rightarrow f(x)\approx 1+x\Rightarrow x=-1$
$(-2, -1), (-1,3)\Rightarrow f(x)\approx -1 + 4 (2 + x)\Rightarrow x=-\frac74$
这样最终也会收敛到$x_1$

如何找到一个$f(x)$使二分法、线性插值法在区间$[a,b]$上求根都收敛, 但收敛到不同的根呢

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

 Author| hbghlyj Posted at 2024-9-22 22:47:34
如果$|f(\frac{a+b}2)|\ll|f(a)|\ll|f(b)|$, 则线性插值收敛到$a$附近的根, 而二分法收敛到$a+b\over2$附近的根

手机版Mobile version|Leisure Math Forum

2025-4-23 05:59 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list