Forgot password?
 Register account
View 256|Reply 2

[函数] 不求导求最值

[Copy link]

16

Threads

18

Posts

329

Credits

Credits
329

Show all posts

Canhuang Posted 2023-5-6 18:58 |Read mode
$f(x)=\dfrac{2\sqrt{2}}{x\sqrt{x^2+1}}+3x,x>0$, 求 $f(x)$ 最小值.极值点为 $x=1$.
我的方法是:
$f(x)\geqslant \dfrac2x+2x+1\quad(1)$
$(1)\iff (x^2-x-2)\sqrt{x^2+1}+2\sqrt2\geqslant0\quad(2)$

$\begin{align*}\text{LHS}&=x^2\sqrt{x^2+1}-(x+2)\sqrt{x^2+1}+2\sqrt2\\
&\geqslant x^2\sqrt{2x}-\dfrac3{4\sqrt2}(\dfrac29(x+2)^2+x^2+1)+2\sqrt2\geqslant0
\end{align*}
$
$\iff 12x^2\sqrt{x}-11x^2-8x+7\geqslant0$
用 $x$ 替换 $\sqrt x$, 得
$12x^5-11x^4-8x^2+7\geqslant0 \iff (x-1)^2(12x^3+13x^2+14x+7)\geqslant0$
有没有更简单的方法??

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-5-7 10:04
既然都猜到 x=1 取,那就对分母凑均值:
\[f(x)=\frac8{2\cdot\sqrt2x\cdot\sqrt{x^2+1}}+3x\geqslant\frac8{2x^2+x^2+1}+3x,\]
然后
\[\frac8{3x^2+1}+3x-5=\frac{3(x-1)^2(3x+1)}{3x^2+1}\geqslant0.\]

Comment

均值掌握的不好😂  Posted 2023-5-7 10:16

Mobile version|Discuz Math Forum

2025-5-31 11:01 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit