Forgot password?
 Create new account
View 155|Reply 2

[不等式] 下凸函数$\dfrac1x,x>0$应用Popoviciu不等式

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2023-5-6 21:40:05 |Read mode
Last edited by hbghlyj at 2023-5-7 18:29:00
pxchg1200 发表于 2013年
设$a,b,c,d>0$ 证明:
\begin{align*}
&\frac{9}{a(b+c+d)}+\frac{9}{b(c+d+a)}+\frac{9}{c(d+b+a)}+\frac{9}{d(a+b+c)}\\
&\geq\frac{16}{(a+b)(c+d)}+\frac{16}{(a+c)(b+d)}+\frac{16}{(a+d)(b+c)}
\end{align*}
(新加坡)
证明
两边同时乘以$a+b+c+d$,不等式变成
\begin{align*}
&\frac{9}{a}+\frac{9}{b}+\frac{9}{c}+\frac{9}{d}+\frac{9}{b+c+d}+\frac{9}{c+d+a}+\frac{9}{d+a+b}+\frac{9}{a+b+c}\\
&\geq \frac{16}{a+b}+\frac{16}{c+d}+\frac{16}{a+c}+\frac{16}{b+d}+\frac{16}{a+d}+\frac{16}{b+c}
\end{align*}
由Popoviciu不等式,我们有
\begin{equation}\label{p}\frac{1}{b}+\frac{1}{c}+\frac{1}{d}+\frac{9}{b+c+d}\geq \frac{4}{b+c}+\frac{4}{c+d}+\frac{4}{b+d}\end{equation}
所以有
\[ 3\sum_{sym}{\frac{1}{a}}+9\sum_{sym}{\frac{1}{a+b+c}}\geq 8\sum_{sym}{\frac{1}{a+b}}\]
故只要证明
\[ \frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\geq 3\sum_{sym}{\frac{1}{a+b+c}} \]
由AM-GM显然。$\square$

\eqref{p}是对下凸函数$\dfrac1x,x>0$应用Popoviciu不等式得到的

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

 Author| hbghlyj Posted at 2023-5-6 21:44:30
AOPS帖子的5#也搜到这个
xzlbq, Mar 24, 2016, 2:13 AM
$x,y,z>0$,
\[1/x+1/y+1/z-4/(y+z)-4/(z+x)-4/(x+y)+9/(x+y+z)\geq 0\]

19

Threads

81

Posts

599

Credits

Credits
599
QQ

Show all posts

O-17 Posted at 2023-5-8 01:24:35
$$
\sum\frac1a+\frac{9}{a+b+c}-\sum\frac{4}{a+b}\equiv\frac{\prod\left(a-b\right)^2+2\sum c^3\left(a+b\right)\left(a-b\right)^2}{\left(\prod a\right)\left[\prod\left(a+b\right)\right]\left(\sum a\right)}
$$

手机版Mobile version|Leisure Math Forum

2025-4-21 22:09 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list