|
Last edited by hbghlyj 2023-5-8 08:37补充Popoviciu’s inequality的证明《不等式的秘密》第二卷—高级不等式 第六章
Example 1.17.1. If $f$ is a convex function then
\begin{equation}\begin{aligned}&f(a) + f(b) + f(c) + f\left(a + b + c\over3\right)\\
≥ \frac43&\left(f\left(a + b\over2\right)+ f\left(b + c\over2\right)+ f\left(c + a\over2\right)\right)\end{aligned}\label1\end{equation}Solution. WLOG, suppose that $a ≥ b ≥ c$. Consider the following number sequences
\begin{aligned}(x) &= (a, a, a, b, t, t, t, b, b, c, c, c);\\
(y) &= (α, α, α, α, β, β, β, β, γ, γ, γ, γ);\end{aligned}where\begin{aligned}
t &={a + b + c\over3},\\
α &={a + b\over2},\\
β &={a + c\over2},\\
γ &={b + c\over2}.\end{aligned}Clearly, we have that $(y)$ is a monotonic sequence. Moreover\begin{gathered}
a ≥ α, 3a + b ≥ 4α, 3a + b + t ≥ 4α + 2β, 3a + b + 3t ≥ 4α + 3β,\\
3a + 2b + 3t ≥ 4α + 4β, 3a + 3b + 3t ≥ 4α + 4β + γ,\\
3a + 3b + 3t + c ≥ 4α + 4β + 2γ, 3a + 3b + 3t + 3c ≥ 4α + 4β + 4γ.\end{gathered}Thus $(x^∗) ≫ (y)$ and therefore $(x^∗) ≫ (y^∗)$. By Karamata inequality, we conclude
\[3 (f(x) + f(y) + f(z) + f(t)) ≥ 4 (f(α) + f(β) + f(γ)) ,\]
which is exactly the desired result. We are done. |
|