Forgot password
 Register account
View 158|Reply 1

[几何] 二次曲线线性系统

[Copy link]

3200

Threads

7827

Posts

52

Reputation

Show all posts

hbghlyj posted 2023-5-9 17:12 |Read mode
Linear system of conics
过4点$ (\pm 1,\pm 1)$的二次曲线$ ax^{2}+(1-a)y^{2}=1, $
    $ a>1: $ 双曲线, 主轴横向;
    $ a=1: $ 纵向平行线$ x=-1,x=1$ 交于[1:0:0]
    $ 0<a<1: $ 椭圆, 主轴纵向;
    $ a=0: $ 圆 (半径 $ {\sqrt {2}} $);
    $ -1<a<0: $ 椭圆, 主轴横向;
    $ a=-1: $ 横向平行线 $ y=-1,y=1$ 交于[0:1:0]
    $ a<-1: $ 双曲线, 主轴纵向,
    $ a=\infty : $ 对角线 $ y=x,y=-x $ 交于[0:0:1] (除以 $ a $ 取 $ a\to \infty $ 极限得 $ x^{2}-y^{2}=0 $)
    又回到 $ a>1, $ 因为二次曲线系是射影直线.
ezgif-4-1f70e55dd4.gif 在 (Levy 1964) 的术语中,这是一个 I 型二次曲线线性系统,并且有动画显示

3200

Threads

7827

Posts

52

Reputation

Show all posts

original poster hbghlyj posted 2023-5-9 17:16
Classification
There are 8 types of linear systems of conics over the complex numbers, depending on intersection multiplicity at the base points, which divide into 13 types over the real numbers, depending on whether the base points are real or imaginary; this is discussed in (Levy 1964) and illustrated in (Coffman).
复数上的8种二次曲线线性系统, 实数上的13种二次曲线线性系统, 是如何分类的

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:11 GMT+8

Powered by Discuz!

Processed in 0.012607 seconds, 25 queries