|
Author |
hbghlyj
Posted 2023-5-12 01:06
2.计算
$T$ 将二次曲线 \eqref{3} 上的每个点 $(x,y)$ 映射到 \eqref{1}\eqref{2} 给出的 $(T_x,T_y)$.
逆映射 $T'$ 将 $(T_x,T_y)$ 映射到 $(x,y)$. 它的系数矩阵为$M_T$的逆矩阵
$$ M_{T'} = \begin{bmatrix} \alpha' & \beta' & \gamma' \\ \eta' & \theta' & \kappa' \\ \delta' & \epsilon' & \zeta' \end{bmatrix}. $$
在 \eqref{3} 中以 $(T_x,T_y)$ 代 $(x,y)$
\begin{multline*}A \left( {\alpha' T_x + \beta' T_y + \gamma' \over \delta' T_x + \epsilon' T_y + \zeta'} \right)^2 + B \left( {\eta' T_x + \theta' T_y + \kappa' \over \delta' T_x + \epsilon' T_y + \zeta'} \right)^2\\+ C \left( {\alpha' T_x + \beta' T_y + \gamma' \over \delta' T_x + \epsilon' T_y + \zeta'} \right) + D \left( {\eta' T_x + \theta' T_y + \kappa' \over \delta' T_x + \epsilon' T_y + \zeta'} \right)\\
+ E \left( {\alpha' T_x + \beta' T_y + \gamma' \over \delta' T_x + \epsilon' T_y + \zeta'} \right) \left( {\eta' T_x + \theta' T_y + \kappa' \over \delta' T_x + \epsilon' T_y + \zeta'} \right) + F = 0\end{multline*}乘以分母$(\delta' T_x + \epsilon' T_y + \zeta')^2$
\begin{multline*}A (\alpha' T_x + \beta' T_y + \gamma')^2 + B (\eta' T_x + \theta' T_y + \kappa')^2 \\+ C (\alpha' T_x + \beta' T_y + \gamma') (\delta' T_x + \epsilon' T_y + \zeta') + D (\eta' T_x + \theta' T_y + \kappa') (\delta' T_x + \epsilon' T_y + \zeta')\\ + E (\alpha' T_x + \beta' T_y + \gamma') (\eta' T_x + \theta' T_y + \kappa') + F (\delta' T_x + \epsilon' T_y + \zeta')^2 = 0\, \end{multline*}整理为$T_x$和$T_y$的多项式
$$ \begin{matrix} (A \alpha'^2 + B \eta'^2 + C \alpha' \delta' + D \eta' \delta' + E \alpha' \eta' + F \delta'^2) T_x^2 \\ + (A \beta'^2 + B \theta'^2 + C \beta' \epsilon' + D \theta' \epsilon' + E \beta' \theta' + F \epsilon'^2) T_y^2 \\ + (2 A \alpha' \gamma' + 2 B \eta' \kappa' + C (\alpha' \zeta' + \gamma' \delta') + D (\eta' \zeta' + \kappa' \delta') + E (\alpha' \kappa' + \gamma' \eta') + 2 F \delta' \zeta') T_x \\ + (2 A \beta' \gamma' + 2 B \theta' \kappa' + C (\beta' \zeta' + \gamma' \epsilon') + D (\theta' \zeta' + \kappa' \epsilon') + E (\beta' \kappa' + \gamma' \theta') + 2 F \epsilon' \zeta') T_y \\ + (2 A \alpha' \beta' + 2 B \eta' \theta' + C (\alpha' \epsilon' + \beta' \delta') + D (\eta' \epsilon' + \theta' \delta') + E (\alpha' \theta' + \beta' \eta') + 2 F \delta' \epsilon') T_x T_y \\ + (A \gamma'^2 + B \kappa'^2 + C \gamma' \zeta' + D \kappa' \zeta' + E \gamma' \kappa' + F \zeta'^2) = 0. \end{matrix} \tag{19}\label{5}$$
\eqref{5} 与 \eqref{4} 具有相同的形式.
现在只需将 $M_T$ 的逆矩阵算出来, 在 \eqref{5} 中以 $\alpha,\dots,\zeta$ 代 $\alpha',\dots,\zeta'$
为计算 $M_T$ 的逆矩阵, 对 $M_T$ 用 Cramer's rule
$$ M_{T'} = {1 \over \Delta} \begin{bmatrix} \left| \begin{matrix} \theta &\kappa \\ \epsilon & \zeta \end{matrix} \right| & \left| \begin{matrix} \epsilon & \zeta \\ \beta & \gamma \end{matrix} \right| & \left| \begin{matrix} \beta & \gamma \\ \theta & \kappa \end{matrix} \right| \\ \quad & \quad & \quad \\ \left| \begin{matrix} \kappa & \eta \\ \zeta & \delta \end{matrix} \right| & \left| \begin{matrix} \zeta & \delta \\ \gamma & \alpha \end{matrix} \right| & \left| \begin{matrix} \gamma & \alpha \\ \kappa & \eta \end{matrix} \right| \\ \quad & \quad & \quad \\ \left| \begin{matrix} \eta & \theta \\ \delta & \epsilon \end{matrix} \right| & \left| \begin{matrix} \delta &\epsilon \\ \alpha & \beta \end{matrix} \right| & \left| \begin{matrix} \alpha & \beta \\ \eta & \theta \end{matrix} \right| \end{bmatrix} \tag{20}$$
where $Δ$ is the determinant of the unprimed coefficient matrix.
Equation (20) allows primed coefficients to be expressed in terms of unprimed coefficients. But performing these substitutions on the primed coefficients of equation (19) it can be noticed that the determinant Δ cancels itself out, so that it can be ignored altogether. Therefore
$ A' = A (\theta \zeta - \kappa \epsilon)^2 + B (\kappa \delta - \eta \zeta)^2 + C (\theta \zeta - \kappa \epsilon) (\eta \epsilon - \theta \delta) + D (\kappa \delta - \eta \zeta) (\eta \epsilon - \theta \delta) + E (\theta \zeta - \kappa \epsilon) (\kappa \delta - \eta \zeta) + F (\eta \epsilon - \theta \delta)^2 \,$
$ B' = A (\epsilon \gamma - \zeta \beta)^2 + B (\zeta \alpha - \delta \gamma)^2 + C (\epsilon \gamma - \zeta \beta) (\delta \beta - \epsilon \alpha) + D (\zeta \alpha - \delta \gamma) (\delta \beta - \epsilon \alpha) + E (\epsilon \gamma - \zeta \beta) (\zeta \alpha - \delta \gamma) + F (\delta \beta - \epsilon \alpha)^2 \,$
$ C' = 2 A (\theta \zeta - \kappa \epsilon) (\beta \kappa - \gamma \theta) + 2 B (\kappa \delta - \eta \zeta) (\gamma \eta - \alpha \kappa) + C [ (\theta \zeta - \kappa \epsilon) (\alpha \theta - \beta \eta) + (\beta \kappa - \gamma \theta) (\eta \epsilon - \theta \delta)]\,$
$+ D [ (\kappa \delta - \eta \zeta) (\alpha \theta - \beta \eta) + (\gamma \eta - \alpha \kappa) (\eta \epsilon - \theta \delta) ] + E [ (\theta \zeta - \kappa \epsilon) (\gamma \eta - \alpha \kappa) + (\beta \kappa - \gamma \theta) (\kappa \delta - \eta \zeta) ] + 2 F (\eta \epsilon - \theta \delta) (\alpha \theta - \beta \eta) \,$
$ D' = 2 A (\epsilon \gamma - \zeta \beta) (\beta \kappa - \gamma \theta) + 2 B (\zeta \alpha - \delta \gamma) (\gamma \eta - \alpha \kappa) + C [ (\epsilon \gamma - \zeta \beta) (\alpha \theta - \beta \eta) + (\beta \kappa - \gamma \theta) (\delta \beta - \epsilon \alpha) ]\,$
$+ D [ (\zeta \alpha - \delta \gamma) (\alpha \theta - \beta \eta) + (\gamma \eta - \alpha \kappa) (\delta \beta - \epsilon \alpha) ] + E [ (\epsilon \gamma - \zeta \beta) (\gamma \eta - \alpha \kappa) + (\beta \kappa - \gamma \theta) (\zeta \alpha - \delta \gamma) ] + 2 F (\delta \beta - \epsilon \alpha) (\alpha \theta - \beta \eta) \,$
$ E' = 2 A (\theta \zeta - \kappa \epsilon) (\epsilon \gamma - \zeta \beta) + 2 B (\kappa \delta - \eta \zeta) (\zeta \alpha - \delta \gamma) + C [(\theta \zeta - \kappa \epsilon) (\delta \beta - \epsilon \alpha) + (\epsilon \gamma - \zeta \beta) (\eta \epsilon - \theta \delta)]\,$
$+ D [ (\kappa \delta - \eta \zeta) (\delta \beta - \epsilon \alpha) + (\zeta \alpha - \delta \gamma) (\eta \epsilon - \theta \delta)] + E [ (\theta \zeta - \kappa \epsilon) (\zeta \alpha - \delta \gamma) + (\epsilon \gamma - \zeta \beta) (\kappa \delta - \eta \zeta)] + 2 F (\eta \epsilon - \theta \delta) (\delta \beta - \epsilon \alpha) \,$
$ F' = A (\beta \kappa - \gamma \theta)^2 + B (\gamma \eta - \alpha \kappa)^2 + C (\beta \kappa - \gamma \theta) (\alpha \theta - \beta \eta) + D (\gamma \eta - \alpha \kappa) (\alpha \theta - \beta \eta) + E (\beta \kappa - \gamma \theta) (\gamma \eta - \alpha \kappa) + F (\alpha \theta - \beta \eta)^2 \,$
The coefficients of the transformed conic have been expressed in terms of the coefficients of the original conic and the coefficients of the planar transformation $T$. Q.E.D. |
|