Forgot password?
 Register account
View 171|Reply 0

[几何] Steiner曲面

[Copy link]

3158

Threads

7933

Posts

45

Reputation

Show all posts

hbghlyj posted 2023-5-12 02:16 |Read mode
Last edited by hbghlyj 2024-12-7 16:01 newromananimated[1].gif
Steiner曲面由以下参数方程确定$$F(r, s, t)=\left(\frac{r s}{r^{2}+s^{2}+t^{2}}, \frac{s t}{r^{2}+s^{2}+t^{2}}, \frac{r t}{r^{2}+s^{2}+t^{2}}\right)$$它是齐次的[对每个$c\ne0$有$F(r,s,t)=F(cr,cs,ct)$]所以有1个自由度.
其中我们可以令$r=1$得到Steiner曲面的一个参数化$$F(1, s, t)=\left(\frac{s}{1+s^{2}+t^{2}}, \frac{s t}{1+s^{2}+t^{2}}, \frac{t}{1+s^{2}+t^{2}}\right)$$
也可以令$r^2+s^2+t^2=1$,那么$F(r, s, t)=(rs,st,rt)$,代入球的参数方程$$S(u, v)=(\cos (u) \cos (v), \sin (u) \cos (v), \sin (v))$$得到Steiner曲面的一个参数化$$F(S(u,v))=\left[\cos (u) \sin (u) \cos (v)^{2}, \sin (u) \cos (v) \sin (v), \cos (u) \cos (v) \sin (v)\right]$$
化简为\begin{cases}x(u, v)=\frac{1}{2} \sin (2 u) \cos (v)^{2} \\ y(u, v)=\frac{1}{2} \sin (u) \sin (2 v) \\ z(u, v)=\frac{1}{2} \cos (u) \sin (2 v)\end{cases}由$\led x&=rs\\y&=st\\z&=rt\endled$得$\led r^2&=\frac{xz}y\\s^2&=\frac{xy}z\\t^2&=\frac{yz}x\endled$代入$r^2+s^2+t^2=1$得到Steiner曲面的隐式方程$$x^{2} y^{2}+x^{2} z^{2}+y^{2} z^{2}-x y z=0$$
National Curve Bank

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | 快速注册

$\LaTeX$ formula tutorial

Mobile version

2025-6-8 06:37 GMT+8

Powered by Discuz!

Processed in 0.016468 second(s), 25 queries

× Quick Reply To Top Edit