Forgot password
 Register account
View 317|Reply 2

[几何] 一道最能装的题,求初中解法。

[Copy link]

17

Threads

82

Posts

5

Reputation

Show all posts

uk702 posted 2023-5-15 09:50 |Read mode
菱形ABCD,E 是 BC 上的一点,F 是 CD 上的一点,且 ∠EAF=1/2 ∠BAD = α。
AF 交 BC 于 M,AE 交 DC 于 N,若 MA = MN,求 CE/BE (用与 α 有关的公式表示)。
Snipaste_2023-05-15_09-47-47.png

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2023-5-16 01:43
211.png
易证$ ADMN $四点共圆,$ ADMC $为平行四边形且\[ \triangle ACN\sim \triangle MCA\riff \dfrac{AC^2}{CM^2}=\dfrac{CN}{CM} \]有
\[ \dfrac{CE}{BE}=\dfrac{CN}{AB}=\dfrac{AC^2}{AB^2}=4\cos ^2\alpha  \]

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2023-5-16 15:04
乌贼 发表于 2023-5-16 01:43
易证$ ADMN $四点共圆,$ ADMC $为平行四边形且\[ \triangle ACN\sim \triangle MCA\riff \dfrac{AC^2}{CM ...
其实都不需要作辅助线,只抓住腰底比即可.

首先易知 $\triangle ACM\sim \triangle NCA$,则
\[\frac{CE}{BE}=\frac{CN}{AC}\cdot\frac{AC}{AB}=\frac{AN}{MA}\cdot\frac{AC}{AB}=4\cos^2\alpha.\]
isee=freeMaths@知乎

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:37 GMT+8

Powered by Discuz!

Processed in 0.013404 seconds, 31 queries