Forgot password
 Register account
View 166|Reply 4

[函数] 已知正实数$x,y,z$满足$x^3-xyz=-5,y^3-xyz=2,z^3-xyz=21$,求$x+y+z$

[Copy link]

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2023-5-15 22:26 |Read mode
已知正实数$x,y,z$满足$x^3-xyz=-5,y^3-xyz=2,z^3-xyz=21$,求$x+y+z$.
软件计算得$x=1,y=2,z=3$

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-5-15 23:32
直接算吧,
\[
x^3y^3z^3=(xyz-5)(xyz+2)(xyz+21).
\]
从而解二次方程, $xyz=6$ 或 $-35/18$. 对前者,
\[
x+y+z=\sqrt[3]{6-5}+\sqrt[3]{6+2}+\sqrt[3]{6+21}=6.
\]
对后者,
\[
x+y+z=\sqrt[3]{-\dfrac{35}{18}-5}+\sqrt[3]{-\dfrac{35}{18}+2}+\sqrt[3]{-\dfrac{35}{18}+21}=\sqrt[3]{\dfrac{3}{2}}.
\]

Comment

乃思  posted 2023-5-16 09:55
后面略去吧, 说了正实数(  posted 2023-5-16 13:40

68

Threads

406

Posts

3

Reputation

Show all posts

original poster Tesla35 posted 2023-5-15 23:38
Czhang271828 发表于 2023-5-15 23:32
直接算吧,
\[
x^3y^3z^3=(xyz-5)(xyz+2)(xyz+21).
多谢。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:45 GMT+8

Powered by Discuz!

Processed in 0.012482 seconds, 26 queries