Forgot password?
 Register account
View 248|Reply 4

[函数] 已知正实数$x,y,z$满足$x^3-xyz=-5,y^3-xyz=2,z^3-xyz=21$,求$x+y+z$

[Copy link]

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

Tesla35 Posted 2023-5-15 22:26 |Read mode
已知正实数$x,y,z$满足$x^3-xyz=-5,y^3-xyz=2,z^3-xyz=21$,求$x+y+z$.
软件计算得$x=1,y=2,z=3$

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-5-15 23:32
直接算吧,
\[
x^3y^3z^3=(xyz-5)(xyz+2)(xyz+21).
\]
从而解二次方程, $xyz=6$ 或 $-35/18$. 对前者,
\[
x+y+z=\sqrt[3]{6-5}+\sqrt[3]{6+2}+\sqrt[3]{6+21}=6.
\]
对后者,
\[
x+y+z=\sqrt[3]{-\dfrac{35}{18}-5}+\sqrt[3]{-\dfrac{35}{18}+2}+\sqrt[3]{-\dfrac{35}{18}+21}=\sqrt[3]{\dfrac{3}{2}}.
\]

Comment

乃思  Posted 2023-5-16 09:55
后面略去吧, 说了正实数(  Posted 2023-5-16 13:40

67

Threads

407

Posts

3537

Credits

Credits
3537

Show all posts

 Author| Tesla35 Posted 2023-5-15 23:38
Czhang271828 发表于 2023-5-15 23:32
直接算吧,
\[
x^3y^3z^3=(xyz-5)(xyz+2)(xyz+21).
多谢。

Mobile version|Discuz Math Forum

2025-5-31 10:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit