Forgot password?
 Register account
View 219|Reply 1

[几何] 过五点有唯一的二次曲线

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-5-26 22:40 |Read mode
若五点$p_1,p_2,\dots,p_5∈\Bbb RP^2$中任意3点不共线, 则过$p_1,p_2,\dots,p_5$有唯一的二次曲线.
即使有2组三点共线也可能有唯一的二次曲线:
点$p_1,p_2,p_3$共线,点$p_1,p_4,p_5$共线, 且这两条直线不重合, 则过$p_1,p_2,\dots,p_5$有唯一的二次曲线,如下图:

证明:由Proposition 46 If a quadric contains three distinct,collinear points then it contains the entire line.
过$p_1,p_2,\dots,p_5$的二次曲线必包含这两条直线,从而是唯一的.


只有1组三点共线也可能有唯一的二次曲线:
点$p_1,p_2,p_3$共线, 其它三点都不共线, 则过$p_1,p_2,\dots,p_5$有唯一的二次曲线,如下图:

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-5-26 22:44
Last edited by hbghlyj 2024-2-22 10:51math.stackexchange.com/questions/2776356/proo … ts-determine-a-conic
(b) If there are three collinear points but not four collinear points, the conic will be degenerate (known) and unique (to be shown).

Mobile version|Discuz Math Forum

2025-5-31 11:22 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit