|
原不等式等价于 $(1+\ln y)e^{W_0(x)}\leq x+y=W_0(x)e^{W_0(x)}+y$, 即
$$
e^{W_0(x)}(W_0(x)-1-\ln y) +y\geq 0.
$$
记 $u:=W_0(x)$, 则
$$
\begin{align*}
e^u(u-1-\ln y)+y&\geq e^{u-\ln y}\cdot y(u-1-\ln y)+y\\
&\geq y(1+u-\ln y)(u-1-\ln y)+y\\
&=y(u-\ln y)^2.
\end{align*}
$$
取等条件 $u=W_0(x)=\ln y$, 即, $x=y\ln y$. |
|