Forgot password?
 Register account
View 285|Reply 6

[不等式] 一个看是数列而实非数列的双重最值

[Copy link]

277

Threads

547

Posts

5413

Credits

Credits
5413

Show all posts

力工 Posted 2023-6-3 20:07 |Read mode
Last edited by kuing 2024-1-21 22:39正数数列$\{a_n\}$的前$n$项和$S_n$满足$S_n=2023$,求$$\min\{\max(\frac{a_1}{2023+S_1},\frac{a_2}{2023+S_2},\cdots ,\frac{a_n}{2023+S_n})\}.$$

0

Threads

413

Posts

6098

Credits

Credits
6098
QQ

Show all posts

爪机专用 Posted 2023-6-3 22:27 From mobile phone
跟数列其实没啥关系,既没递推也没通项,就一n元最值题

Comment

可能是为了表达方便吧  Posted 2023-6-3 22:58
意思应该是,标签可以改做“[不等式]”  Posted 2023-6-4 00:25

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-6-3 22:39
Last edited by Czhang271828 2023-6-3 23:22观察知取等条件 $a_k=a_1\cdot \left(1+\dfrac{a_1}{S_n}\right)^{k-1}$, 最后答案见下一楼.

应该有什么可以刚好取等的装逼做法, 然而没想到.

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-6-3 23:22
Czhang271828 发表于 2023-6-3 22:39
观察知取等条件 $a_k=a_1\cdot \left(1+\dfrac{a_1}{S_n}\right)^{k-1}$, 最后答案 $1-\sqrt[2023]{1/2}$.  ...
用一下比较笨的调整法吧, 若没能全部取等, 则存在 $p$ 使得 $\dfrac{a_p}{S_n+S_p}$ 最大.

若 $p$ 可取的最大指标小于 $2023$, 则有调整 $(\exists \epsilon>0)$
$$
\left[\dfrac{a_p}{S_n+S_p}>\dfrac{a_{p+1}}{S_n+S_{p+1}}\right]\longrightarrow \left[\dfrac{a_p-\epsilon}{S_n+S_p-\epsilon}=\dfrac{a_{p+1}+\epsilon}{S_n+S_{p+1}}\right].
$$
这样的调整对指标不属于 $\{p,p+1\}$ 的 $\dfrac{a_k}{S_n+S_k}$ 项毫无影响.

就以上进行至多可数步调整, 再根据单调数列确界定理, 最后的极限情况是
$$
\dfrac{a_1}{S_n+S_1}=\cdots=\dfrac{a_p}{S_n+S_p}=\cdots=\dfrac{a_{2022}}{S_n+S_{2022}}.
$$
此时歇息少顷, 看看取等条件意味着什么. 对分母减分子, 则有
$$
\dfrac{a_1}{S_n}=\dfrac{a_2}{S_n+a_1}=\dfrac{a_3}{S_n+a_1+a_2}=\cdots
$$
从而 $a_2=a_1\cdot \left(1+\dfrac{a_1}{S_n}\right)$, $a_3=a_1\cdot\left(1+\dfrac{a_1}{S_n}\right)^2$. 归纳假设 $a_k=a_1\cdot\left(1+\dfrac{a_1}{S_n}\right)^{k-1}$, 则
$$
\begin{align*}
a_{k+1}&=\dfrac{a_1}{S_n}\left(S_n+a_1+\cdots +a_1\cdot\left(1+\dfrac{a_1}{S_n}\right)^{k-1}\right)\\
&=\dfrac{a_1}{S_n}\left(S_n+a_1\cdot\dfrac{\left(1+\dfrac{a_1}{S_n}\right)^{k}-1}{1+\dfrac{a_1}{S_n}-1}\right)\\
&=a_1\cdot\left(1+\dfrac{a_1}{S_n}\right)^{k}.
\end{align*}
$$
归纳假设成立.

随后讨论下, 若此时 $\dfrac{a_{2023}}{S_n+S_{2023}}$ 比前面的取等的项都严格大, 则对 $2\leq k\leq 2022$ 调整 $a_k\to a_k+\epsilon_k$, 使得前 $2022$ 项的等比关系保持(由于首项不变, 从而取等条件保持). 并将末项调整作 $a_{2023}\to a_{2023}-(\epsilon_1+\cdots+\epsilon_{2022})$. 此时的效果是第 $\dfrac{a_{2023}}{S_n+S_{2023}}$ 项略微减少, 而前 $2022$ 项在保持取等的条件下略微增大.

最终 $\min\max$ 对应 $2023$ 项全取等, 也就是
$$
S_n=\sum_{k=0}^{2022}a_1\cdot\left(1+\dfrac{a_1}{S_n}\right)^{k}=a_1\cdot \dfrac{\left(1+\dfrac{a_1}{S_n}\right)^{2023}-1}{\left(1+\dfrac{a_1}{S_n}\right)-1}=S_n\cdot \left(\left(1+\dfrac{a_1}{S_n}\right)^{2023}-1\right).
$$
因此 $\left(1+\dfrac{a_1}{S_n}\right)^{2023}=2$, 解得 $\sqrt[2023]2-1=\dfrac{a_1}{S_n}$. 那么
$$
\dfrac{a_1}{S_n+S_1}=\dfrac{1}{\dfrac{S_n}{a_1}-1}=\cdots
$$

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-6-3 23:24
为方便码字,记 `2023=u`,则 `S_n=u`,记
\begin{align*}
M&=\max\left\{\frac{a_1}{u+S_1},\frac{a_2}{u+S_2},\frac{a_3}{u+S_3},\dots,\frac{a_n}{u+S_n}\right\}\\
&=\max\left\{\frac{S_1}{u+S_1},\frac{S_2-S_1}{u+S_2},\frac{S_3-S_2}{u+S_3},\dots,\frac{S_n-S_{n-1}}{u+S_n}\right\}\\
&=\max\left\{1-\frac u{u+S_1},1-\frac{u+S_1}{u+S_2},1-\frac{u+S_2}{u+S_3},\dots,1-\frac{u+S_{n-1}}{u+S_n}\right\}\\
&=1-\min\left\{\frac u{u+S_1},\frac{u+S_1}{u+S_2},\frac{u+S_2}{u+S_3},\dots,\frac{u+S_{n-1}}{u+S_n}\right\},
\end{align*}
由于
\[\frac u{u+S_1}\cdot\frac{u+S_1}{u+S_2}\cdot\frac{u+S_2}{u+S_3}\cdots\frac{u+S_{n-1}}{u+S_n}=\frac u{u+S_n}=\frac12,\]
所以
\[\min\left\{\frac u{u+S_1},\frac{u+S_1}{u+S_2},\frac{u+S_2}{u+S_3},\dots,\frac{u+S_{n-1}}{u+S_n}\right\}\leqslant\frac1{\sqrt[n]2},\]

\[M\geqslant1-\frac1{\sqrt[n]2},\]
取等略。

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 精彩!

View Rating Log

Mobile version|Discuz Math Forum

2025-5-31 10:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit