为方便码字,记 `2023=u`,则 `S_n=u`,记
\begin{align*}
M&=\max\left\{\frac{a_1}{u+S_1},\frac{a_2}{u+S_2},\frac{a_3}{u+S_3},\dots,\frac{a_n}{u+S_n}\right\}\\
&=\max\left\{\frac{S_1}{u+S_1},\frac{S_2-S_1}{u+S_2},\frac{S_3-S_2}{u+S_3},\dots,\frac{S_n-S_{n-1}}{u+S_n}\right\}\\
&=\max\left\{1-\frac u{u+S_1},1-\frac{u+S_1}{u+S_2},1-\frac{u+S_2}{u+S_3},\dots,1-\frac{u+S_{n-1}}{u+S_n}\right\}\\
&=1-\min\left\{\frac u{u+S_1},\frac{u+S_1}{u+S_2},\frac{u+S_2}{u+S_3},\dots,\frac{u+S_{n-1}}{u+S_n}\right\},
\end{align*}
由于
\[\frac u{u+S_1}\cdot\frac{u+S_1}{u+S_2}\cdot\frac{u+S_2}{u+S_3}\cdots\frac{u+S_{n-1}}{u+S_n}=\frac u{u+S_n}=\frac12,\]
所以
\[\min\left\{\frac u{u+S_1},\frac{u+S_1}{u+S_2},\frac{u+S_2}{u+S_3},\dots,\frac{u+S_{n-1}}{u+S_n}\right\}\leqslant\frac1{\sqrt[n]2},\]
即
\[M\geqslant1-\frac1{\sqrt[n]2},\]
取等略。 |