Forgot password?
 Register account
View 238|Reply 2

[数论] 方程组mod m有解

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-6-4 02:01 |Read mode
Algebra Chapter4 page16
7. Continuing Problem 6, consider the simultaneous equations
$6x + 4y + 13z ≡ 5, 9x + 6y ≡ 7, 12x + 8y − z ≡ 12 \pmod m$
For which values of $m ≥ 2$ will the equations be consistent?
找出所有 $m$ 使得方程组$\begin{aligned}6x + 4y + 13z &≡ 5,\\9x + 6y&≡ 7,\\12x + 8y - z&≡ 12\end{aligned}\pmod m$有解

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-6-4 14:28
那就是问 $\begin{pmatrix}6&4&13\\9&6&0\\12&8&-1\end{pmatrix}$ 的列向量空间何时包含 $\begin{pmatrix}5\\7\\12\end{pmatrix}$.

先将矩阵各列进行初等变换, 得
\[
\begin{pmatrix}54&0&13\\3&0&0\\0&0&-1\end{pmatrix}
\]
原问题等价于, $\mathrm{span}\{\binom{54}{3}\}$ 何时包含 $\binom{12\cdot 13+5}{7}=\binom{161}{7}$.

自然地, $m$ 不为 $3$ 倍数. 此时 $\mathrm{span}\{\binom{54}{3}\}=\mathrm{span}\{\binom{18}{1}\}$. 从而 $161=7\cdot 18\pmod m$. 此时 $m$ 是  $35$ 的因子.

综上, $m=5$ 或 $7$.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-6-4 22:54
7. Continuing Problem 6, consider the simultaneous equations
应该使用 6. 的结果吗?

Mobile version|Discuz Math Forum

2025-5-31 11:15 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit