Forgot password?
 Register account
View 400|Reply 5

[几何] Rt△ABC 中,∠B=90°,AB=4,BC=8,∠BCD=∠ADC=2∠ACB,求 AD 。

[Copy link]

17

Threads

82

Posts

1822

Credits

Credits
1822

Show all posts

uk702 Posted 2023-6-12 15:12 |Read mode
如图,Rt△ABC 中,∠B=90°,AB=4,BC=8,D 是与 A 异侧的一点且满足 ∠BCD=∠ADC=2∠ACB,求 AD 。
有什么高招?
2023-06-12_144228.png

686

Threads

110K

Posts

910K

Credits

Credits
91229
QQ

Show all posts

kuing Posted 2023-6-12 16:28
用正弦定理呗,记 `t=\angle ACB`,则
\begin{align*}
\frac{AD}{AC}&=\frac{\sin3t}{\sin2t}=\frac{\sin(2t+t)}{\sin2t}\\
&=\cos t+\frac{\cos2t\sin t}{\sin2t}\\
&=\cos t+\frac{2\cos^2t-1}{2\cos t}\\
&=2\cos t-\frac1{2\cos t}\\
&=\frac4{\sqrt5}-\frac{\sqrt5}4,
\end{align*}
从而 `AD=16-\sqrt5`。

(如果限初中方法那就当我没发😑)

Comment

招是高招,答案有手误。  Posted 2023-6-12 18:23
哦,最后是 = 16-5 = 11 🤣  Posted 2023-6-12 19:15

17

Threads

82

Posts

1822

Credits

Credits
1822

Show all posts

 Author| uk702 Posted 2023-6-13 08:37
这是目前找到的最几何的解法。
Snipaste_2023-06-13_08-38-52.png

54

Threads

959

Posts

9977

Credits

Credits
9977

Show all posts

乌贼 Posted 2023-6-13 10:29
uk702 发表于 2023-6-13 08:37
这是目前找到的最几何的解法。
大同小异
如图, 3.png
$ AE\px CD $交$ BA $于$ E $,则$ AEDC $为等腰梯形,取$ BF=3 $,有\[ AF=5\riff\angle AFB=2\angle ACB=\angle BCD=\angle AEB \]得\[ \triangle ABE\cong \triangle ABF\riff BE=BF=3\riff AD=CE=11 \]

Mobile version|Discuz Math Forum

2025-5-31 10:44 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit