Forgot password?
 Register account
View 259|Reply 1

[函数] $\sin(\sin(\cdots \sin (x)))=\cos(\cos(\cdots \cos(x)))$.

[Copy link]

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-6-19 13:47 |Read mode
记 $f^{(1)}(x)=f(x)$, 以及 $f^{(n+1)}(x)=f(f^{(n)}(x))$​. 求证:
$$
\sin^{(n)}(x)=\cos^{(n)}(x)\quad (x\in \mathbb R)
$$
有解当且仅当 $n=1,3$.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2023-6-19 17:42
鉴于周期性,我们只考虑$x\in(-\pi,\pi]$即可
令$f_n(x)=\cos^{(n)}(x), g_n(x)=\sin^{(n)}(x)$,然后再令$x_0$为$x=\cos(x)$的解,会有$x_0=0.739085$

这里就会有
\[f'_n(x)=(-1)^nf'_{n-1}(x)\sin(f_{n-1}(x))\]
\[g'_n(x)=g'_{n-1}(x)\cos(g_{n-1}(x))\]
这里面,$\sin(f_{n-1}(x))=0$只有$n=1$,也就是$\sin(\cos(x))=0$会有$x=\frac{\pi}{2}+k\pi$为解,$n>1$就根本没解了,然后$f_2'(x)=0$除了这些解,还继承有$f'_1(x)=0$的解,即$x=k\pi$,$n>2$时就只能继承上一层的解,于是$n\ge 2$时,就只有$f'_n(x)=0$的解为$x=\frac{k\pi}{2}$
另一边,$\cos(g_{n-1}(x))=0$是不可能的,$g'_n(x)=0$的解只能是继承上一层,最终$g'_n(x)=0$的解和$g'_1(x)=0$相同,即$x=\frac{\pi}{2}+k\pi$

这些结果也会说明,$f_n(x)$的最小值,在$x=\frac{\pi}{2}+k\pi$和$k\pi$里面轮流跳跃,具体是哪个看$n$的取值,更确切的说,$n$为奇数时,在$x=\frac{\pi}{2}+k\pi$取得,$n$为偶数时在$x=k\pi$取得
而$g_n(x)$的最大值,则永远在$\frac{\pi}{2}+2k\pi$取到

接下来一个一个看
1、$n=1$,太无聊,略

2、$n=2$
\[\cos(\cos(x))-\sin(\sin(x))\]
\[\ge 1-\frac{\cos^2(x)}{2}-\sin(x)=\frac{1}{2}(1-\sin(x))^2\ge 0\]
两个等号不能同时取到,所以其实是严格大于的

3、$n=3$
观察$x=0$和$x=\frac{\pi}{2}$,会有
\[f_3(0)-g_3(0)=\cos(\cos(1))>0\]
\[f_3(\frac{\pi}{2})-g_3(\frac{\pi}{2})=\cos(1)-\sin(\sin(1))=-0.205322<0\]
那么根据连续性,肯定有解的

4、$n=4$
\[f_4(x)-g_4(x)\]
\[\ge 1-\frac{f_3(x)^2}{2}-g_3(x)\]
\[=1-\frac{1-\sin^2(\cos(\cos(x)))}{2}-\sin(\sin(\sin(x)))\]
\[=\frac{1}{2}[1-2\sin(\sin(\sin(x)))+\sin^2(\cos(\cos(x)))]\]
注意按$n=2$的证明,会有$\sin(\sin(x))<\cos(\cos(x))$,而且这两者都在$(0,1)$范围内,显然就有
\[\sin(\sin(\sin(x)))<\sin(\cos(\cos(x)))\]
于是
\[>\frac{1}{2}[1-2\sin(\cos(\cos(x)))+\sin^2(\cos(\cos(x)))]=\frac{1}{2}[1-\sin(\cos(\cos(x)))]^2\ge 0\]

5、$n\ge 5$
前面已经说明了$g_n(x)$最大值在$x=\frac{\pi}{2}$取到,也就有
\[g_n(x)\le g_n(\frac{\pi}{2})=\sin(g_{n-1}(\frac{\pi}{2}))<g_{n-1}(\frac{\pi}{2})\]
最终结果就是$n\ge 5$时,有
\[g_n(x)<g_5(\frac{\pi}{2})=0.627572\]

鉴于$\cos(x)$在$(0,\pi)$上是个减函数,会有当$1>x>x_0$时,$\cos(x)<\cos(x_0)=x_0$,反之亦然
另一方面,令$h(x)=\cos(\cos(x))-x$,则有
\[h'(x)=\sin(x)\sin(\cos(x))-1\le 0\]
其零点在$x=x_0$取到,这个说明$x<x_0$时,$\cos(\cos(x))>x$,$x>x_0$时,$\cos(\cos(x))<x$,也就是说,$f_n(x)$永远会比$f_{n-2}(x)$更接近$x_0$
而$g_2(x)\in[\cos(1),1]$,且$\cos(1)<x_0<1$,这会导致$g_n(x)$其实就在$x_0$附近震荡,而且$n$为奇数时,会有
\[f_n(x)\ge f_n(\frac{\pi}{2})\ge f_5(\frac{\pi}{2})=0.65429\]
$n$为偶数时,有
\[f_n(x)\ge f_n(0)\ge f_4(0)=0.65429\]
这就说明了,当$n\ge 5$时,会有
\[g_n(x)<0.627572<0.65429<f_n(x)\]
那当然是无解的

Mobile version|Discuz Math Forum

2025-5-31 11:10 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit