|
Last edited by hbghlyj 2025-4-17 19:34已知抛物线 $C: x^2=2 p y \quad(p>0)$ 的焦点为 $F, \triangle A B Q$ 的三个顶点都在抛物线 $C$ 上,点 $M$ 为 $A B$ 的中点, $\overrightarrow{Q F}=3 \overrightarrow{F M}$ ,若线段 $A B$ 长的最大值为 $4 \sqrt{3}$ ,则抛物线 $C$ 的方程为
A.$x^2=6 y$
B.$x^2=8 y$
C.$x^2=9 y$
D.$x^2=12 y$
由题可知 $F(0,p)$
设 $A(x_1,\dfrac{x_1^2}{2p})$、$B(x_2,\dfrac{x_2^2}{2p})$、$Q(x_3,\dfrac{x_3^2}{2p})$
又 $M$ 为 $AB$ 中点
故 $M(\dfrac{x_1+x_2}{2},\dfrac{x_1^2+x_2^2}{4p})$
设直线 $AB:y=kx+b$
$\begin{cases}
x^2=2py\\
y=kx+b
\end{cases}\Longrightarrow x^2-2pkx-2pb=0$
$x_1+x_2=2pk\quad x_1x_2=-2pb$
由 $\vv{QF}= 3\vv{FM}$得
$(-x_3,p-\dfrac{x_3^2}{2p})=3(\dfrac{x_1+x_2}{2},\dfrac{x_1^2+x_2^2}{4p}-p)$
$\begin{cases}
-x_3=\dfrac32(x_1+x_2)\\
p-\dfrac{x_3^2}{2p}=3\dfrac{x_1^2+x_2^2}{4p}-3p
\end{cases}$
$\Longrightarrow\begin{cases}
-x_3=3pk\\
-x_3^2=\dfrac32[(x_1+x_2)^2-2x_1x_2]-8p^2=6p^2k^2+6pb-8p^2
\end{cases}$
$\Longrightarrow 15p^2k^2+6pb-8p^2=0$
$\begin{aligned}
|AB|&=\sqrt{(x_1-x_2)^2+\dfrac{1}{4p^2}(x_1^2-x_2^2)^2}\\
&=\sqrt{(x_1+x_2)^2-4x_1x_2+\dfrac{1}{4p^2}[(x_1+x_2)^2-4x_1x_2)(x_1+x_2)^2]}\\
&=\sqrt{4p^2k^2+8pb+\dfrac{1}{4p^2}[(4p^2k^2+8pb)4p^2k^2]}\\
&=\sqrt{(k^2+1)(4p^2k^2+8pb)}\\
&=2\sqrt{(k^2+1)(p^2k^2+2pb)}\\
&=2\sqrt{(k^2+1)\left(p^2k^2+2(-\dfrac16(15p^2k^2-8p^2))\right)}\\
&=2\sqrt{(k^2+1)(\dfrac83p^2-4p^2k^2)}\\
&=4p\sqrt{(k^2+1)(\dfrac23-k^2)}
\end{aligned}$
令 $f(k)=(k^2+1)(\dfrac23-k^2)$
$f^\prime(k)=2k(-2k^2-\dfrac13)=0$
解得 $k=0$
$|AB|_{\max}=4p\sqrt{\dfrac23}=4\sqrt{3}$
则 $p=\dfrac{3\sqrt{2}}{2}$
则抛物线 $C$ 的方程为 $x^2=3\sqrt{2}y$
不知道哪里算错了,另外这题有简单的方法吗? |
|