Forgot password?
 Register account
View 374|Reply 5

[数列] 数列命题初等求证

[Copy link]

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

hjfmhh Posted 2023-7-5 23:12 |Read mode
348PI_CL70HF3S(H~OBF(HO.png

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-7-6 13:51
Last edited by Czhang271828 2023-7-6 19:42直接算. 不妨设存在 $m\in \mathbb N_+$ 使得 $\dfrac \beta m<1$. 计算得
\begin{align*}
&\left(1-\dfrac{\beta }{m+1}\right)\left(1-\dfrac{\beta }{m+2}\right)\cdots \left(1-\dfrac{\beta }{m+n}\right)\\[8pt]
=\,&\exp\sum _{k=1}^n\ln \left(1-\dfrac{\beta}{{m+k}}\right)\leq \exp \sum_{k=1}^n\dfrac{-\beta }{m+k}\\[8pt]
\leq \,&\exp \left(-\beta \cdot \int_{m+1}^{m+n+1}\dfrac{\mathrm dx}{x}\right)
\leq \exp \left(\beta\cdot  \ln\dfrac{m+1}{m+n+1}\right)\\[8pt]
=\,& \left(\dfrac{m+1}{m+n+1}\right)^\beta.
\end{align*}
从而 $b_n$ 被 $\dfrac{C}{n^\beta }$ 控制.

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2023-7-6 18:14
Czhang271828 发表于 2023-7-6 13:51
直接算. 不妨设存在 $m\in \mathbb N_+$ 使得 $\dfrac \beta m
倒数第二个小于等式反了

Comment

谢谢, 调整了, 思路一样  Posted 2023-7-6 19:41

193

Threads

247

Posts

2774

Credits

Credits
2774

Show all posts

 Author| hjfmhh Posted 2023-7-6 18:47
Czhang271828 发表于 2023-7-6 13:51
直接算. 不妨设存在 $m\in \mathbb N_+$ 使得 $\dfrac \beta m
306bfa5834d7faee8867d6499a4c21a.jpg 按您的思路是不是可以这样理解

Comment

是这样的, 这个思路应该挺常规的  Posted 2023-7-6 19:43

Mobile version|Discuz Math Forum

2025-5-31 10:35 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit