Forgot password?
 Register account
View 287|Reply 2

[几何] 对应边长相等的凸多边形 对应角之差形成的序列至少4个变号

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-7-16 23:26 |Read mode
Last edited by hbghlyj 2023-7-17 14:27pillowmath Math 206A Lecture 16
Lemma 1.1. 设 $Q = [x_1,\dots, x_n], Q^′ = [x^′_1, \dots , x^′_n]$ 为两个非全等凸多边形,
对应边长相等(对于 $i = 1, \dots , n \pmod n$ 有 $|x_i - x_{i+1}| = |x^′_i - x^′_{i+1}|$),
$δ_i = ∠x_{i−1}x_ix_{i+1} − ∠x^′_{i−1}x^′_ix^′_{i+1}$,证明:序列 $δ_1,\dots,δ_n$ 中至少存在 4 个变号。
例. 正方形和菱形,$∠x_4'x_1'x_2'$为直角,$∠x_4'x_1'x_2'$为锐角,故$δ_1>0$,序列$δ_1,δ_2,δ_3,δ_4$的符号为$+-+-$.

以下证明似乎太简短,请求解释一下 刚理解,记在2#了
Proof. Proceed by contradiction. Then $\barδ = \{+, +, . . . , +, −, −, . . . , −\}$. Then on one side of the polygon, the angles are increasing.

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-7-17 13:18
Last edited by hbghlyj 2023-7-17 18:53凸多边形对应边长相等且非全等,所以每组对应角都不等,$\delta_i\ne0$.
将$\delta_i$排列在圆周上(指标$\bmod n$循环),可能有$2,4,6,\cdots$个变号。
那只要排除2个变号的情况$\{+, +, . . . , +, −, −, . . . , −\}$就能证明至少4个变号。

假设$\delta_1,\dots,\delta_k$为正,$\delta_{k+1},\dots,\delta_n$为负。
对$x_1x_2\dots x_{k-1}x_k,x_1'x_2'\dots x_{k-1}'x_k'$有$|x_1-x_2|=|x_1'-x_2'|,\dots,|x_{k-1}-x_k|=|x_{k-1}'-x_k'|$且$∠x_1x_2x_3>∠x_1'x_2'x_3',\dots,∠x_{k-2}x_{k-1}x_k>∠x_{k-2}'x_{k-1}'x_k'$,使用Lemma 1.2 (arm lemma)得$x_1x_k>x_1'x_k'$.
同理对$x_kx_{k+1}\dots x_nx_1,x_k'x_{k+1}'\dots x_n'x_1'$使用Lemma 1.2 (arm lemma)得$x_1x_k<x_1'x_k'$.
矛盾,所以$\delta_1,\dots,\delta_n$至少有4个变号。


以上是arm lemma的简单应用。关键是怎么证明arm lemma🤔

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-7-17 14:00
Last edited by hbghlyj 2023-7-17 18:51Lemma 1.2 (arm lemma)就是Proofs from THE BOOK Ch.14第96页Cauchy’s arm lemma.[4th ed.]
书有插图,比简略的Course notes容易理解。
If $Q$ and $Q'$ are convex (planar or spherical) $n$-gons, labeled as in the figure,
such that $q_iq_{i+1} = q'_iq'_{i+1}$ holds for the lengths of corresponding edges for $1 ≤ i ≤ n - 1$, and $α_i ≤ α'_i$ holds for the sizes of corresponding angles for $2 ≤ i ≤ n - 1$, then the “missing” edge length satisfies $q_1q_n ≤ q'_1q'_n$, with equality if and only if $α_i = α'_i$ holds for all $i$.
Untitled.png
书上接着讲了它的证明。

Mobile version|Discuz Math Forum

2025-5-31 10:37 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit