|
kuing
Posted 2023-7-23 22:06
锐角三角形外心到三边距离之和 = R+r(证明见 forum.php?mod=viewthread&tid=9493),又有公式
\begin{align*}
R&=\frac{abc}{\sqrt{(a+b+c)(a+b-c)(b+c-a)(c+a-b)}}, \\
r&=\frac{\sqrt{(a+b-c)(b+c-a)(c+a-b)}}{2\sqrt{a+b+c}},
\end{align*}
现在 `a=2`, `b+c=4`,代入化为
\[R+r=\frac{bc}{\sqrt{3\bigl(4-(b-c)^2\bigr)}}+\frac{\sqrt{4-(b-c)^2}}{2\sqrt3},\]
再由
\[bc=\frac{(b+c)^2-(b-c)^2}4=4-\frac{(b-c)^2}4,\]
代入化简得
\[R+r=\frac{\sqrt3}4\cdot\frac{8-(b-c)^2}{\sqrt{4-(b-c)^2}},\]
由锐角限制易知 `0\leqslant(b-c)^2<1`,下略。 |
|