Forgot password?
 Create new account
View 223|Reply 4

[组合] 请教一个图论问题

[Copy link]

5

Threads

1

Posts

37

Credits

Credits
37

Show all posts

maomaoxiangcao Posted at 2023-7-31 19:53:14 |Read mode
一个二部图,左边有 12 个点,对于左边的任意大小为 8 的点集,右边都恰有 16 个点与之相连;对于左边的任意大小为 10 的点集,右边都恰有 20 个点与之相连,求证:右边共有 24 个点和左边的点有联边。

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-8-5 00:11:11
Last edited by Czhang271828 at 2024-9-5 20:39:00
hbghlyj 发表于 2023-8-1 04:00
设左边的顶点为$A_1,\dots,A_{12}$,
对于10个点$A_1,\dots,A_{10}$右边恰有 20 个点与之相连,记为集合$\m ...
对 $\geq$ 的简单证明.

显然对任意大小为 $10-8=2$ 的点集, 总有至少 $20-16=4$ 个点与之相连. 设右侧共 $n$ 个点, 则对任意大小为 $12-10=2$ 的点, 至少有 $n-20$ 个点与之相连, 从而 $n-20\geq 4$.

以上表明"左侧 $2$ 点恰连右侧 $4$ 点", 类似的取等条件如"左侧 $4$ 点恰连右侧 $8$ 点". 因此二部图的结构是"左侧每 $2$ 点连右侧 $4$ 点, 分作 $6$ 个连通分支".

以及好久没回论坛了.

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

hbghlyj Posted at 2024-9-4 15:44:41
Last edited by hbghlyj at 2024-9-5 13:20:00
hbghlyj 发表于 2023-8-1 04:00
设左边的顶点为$A_1,\dots,A_{12}$,
对于10个点$A_1,\dots,A_{10}$右边恰有 20 个点与之相连,记为集合$\mathcal B_1$
对于10个点$A_3,\dots,A_{12}$右边恰有 20 个点与之相连,记为集合$\mathcal B_2$
对于8个点$A_3,\dots,A_{10}$右边恰有 16 个点与之相连,记为集合$\mathcal B_3$
因为$\{A_1,\dots,A_{10}\}\cup\{A_3,\dots,A_{12}\}=\{A_1,\dots,A_{12}\}$,要证的等价于$\abs{\mathcal B_1\cup\mathcal B_2}=24$.
因为$\{A_1,\dots,A_{10}\}\cap\{A_3,\dots,A_{12}\}=\{A_3,\dots,A_{10}\}$,所以$\mathcal B_3\subseteq\mathcal B_1\cap\mathcal B_2$
\begin{align*}\abs{\mathcal B_1\cup\mathcal B_2}&=\abs{\mathcal B_1}+\abs{\mathcal B_2}-\abs{\mathcal B_1\cap\mathcal B_2}\\
&\le\abs{\mathcal B_1}+\abs{\mathcal B_2}-\abs{\mathcal B_3}\\
&=20+20-16=24\end{align*}
还剩证$\ge$不会

我转发到 math.stackexchange.com/questions/4966892/
相關資料:essay.utwente.nl/92667/1/Tilburg_BA_CS_EEMCS.pdf
Theorem 3.6. Given a bipartite graph $G = (V_0, V_1, E)$, the coverage function $f$ is sub-modular.
Proof. Since $N (X)∩N (Y ) ⊇ N (X ∩Y )$ and $N (X)∪N (Y ) = N (X ∪Y )$, the non-negativity of the cardinality function implies at once the submodular inequality.

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

hbghlyj Posted at 2024-9-5 20:03:12
如何理解藍色文字
Matthias Kaul answered 2023-9-5
($|N(X)| \leq 4$):

This direction is a bit harder. Observe that any two element set $X'$ fulfills the following:
$$
|N(X') \setminus N(Y)| \geq 4 \; \forall Y \subseteq U \setminus X', |Y| \leq 8.
$$This follows directly from submodularity of the neighbourhood function and the fact that the reduced value of every two element set is known to be $4$ respective to any disjoint set of cardinality $8$.
If this does not make you happy, it can also be seen by purely combinatorial means, but this is left as an exercise for the reader.

3152

Threads

8505

Posts

610K

Credits

Credits
66261
QQ

Show all posts

hbghlyj Posted at 2024-9-5 21:31:28
$|X'|=2,|Y|=8,X'\cap Y=\emptyset$
$|N(Y)|=16,N(X'\cup Y)=N(X')\cup N(Y)$
$|N(X')\setminus N(Y)|+|N(Y)|=|N(X'\cup Y)|=20,$
$\implies|N(X') \setminus N(Y)|=4$. 证明是这样的吗?

手机版Mobile version|Leisure Math Forum

2025-4-23 05:49 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list