|
original poster
hbghlyj
posted 2023-8-8 13:11
二元方程组 二阶渐近
求证:存在常数$C_1,C_2$,对任意实数$u,v,x,y$满足
\begin{cases}\exp (u)+\exp (2 v)+\exp (x)+\exp (2 y)=4\\\exp (u)+\exp (v)+\exp (x)+\exp (y)=4\end{cases}则有
\[\led
{\abs{u+x+x^2-2y^2}\over(x^2+y^2)^{3/2}}\le C_1\\
{\abs{v+y+3y^2}\over(x^2+y^2)^{3/2}}\le C_2
\endled\]
注:这系数是AsymptoticSolve[{Exp[u] + Exp[2 v] + Exp[x] + Exp[2 y] == 4, Exp[u] + Exp[v] + Exp[x] + Exp[y] == 4}, {u, v} -> {0, 0}, {{x, y}, {0, 0}, 2}]算的,换成其它数就不存在$C_1,C_2$了。 |
|