|
Author |
hbghlyj
Posted at 2023-8-8 13:15:16
Last edited by hbghlyj at 2023-8-8 13:34:00同样解出$v=\log \left(\frac{1}{2} \left(1\pm\sqrt{1-4 e^y \left(e^y-1\right)}\right)\right)$
较大的$\log \left(\frac{1}{2} \left(1+\sqrt{1-4 e^y \left(e^y-1\right)}\right)\right)$在$y=0$处展开就是$-y-3y^2+O(y^3)$
- Series[Log[1/2 (1 + Sqrt[1 - 4 E^y (-1 + E^y)])], {y, 0, 2}]
Copy the Code
解出$u=\log \left(\frac{1}{2} \left(7-2 \left(e^x+e^y\right)\pm\sqrt{1-4 e^y \left(e^y-1\right)}\right)\right)$
较小的$\log \left(\frac{1}{2} \left(7-2 \left(e^x+e^y\right)-\sqrt{1-4 e^y \left(e^y-1\right)}\right)\right)$在$(x,y)=(0,0)$处展开是$-x-x^2+2y^2+O((x^2+y^2)^{3/2})$- Series[Log[1/2 (7 - 2 (E^x + E^y) - Sqrt[1 - 4 E^y (-1 + E^y)])], {x, 0, 2}, {y, 0, 2}]
Copy the Code
但是较大的$\log \left(\frac{1}{2} \left(7-2 \left(e^x+e^y\right)+\sqrt{1-4 e^y \left(e^y-1\right)}\right)\right)$在$(x,y)=(0,0)$处展开不是那个式子。
|
|