Forgot password?
 Register account
View 228|Reply 3

[函数] sin迭代

[Copy link]

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-8-9 01:13 |Read mode
设 $a_0=\frac{\pi}{4}, a_1=\sin a_0, \cdots, a_{n+1}=\sin a_n$, 求证: $$ \frac{1}{\sqrt{3 n+2}} \leqslant a_n \leqslant \sqrt{\frac{5}{n}} $$

19

Threads

44

Posts

409

Credits

Credits
409
QQ

Show all posts

O-17 Posted 2023-8-9 03:24
考虑数学归纳法, 只需证明以下两式
\begin{align*}
\sin\sqrt{\frac5n}&<\sqrt{\frac5{n+1}}\\
\sin\frac{1}{\sqrt{3n+2}}&>\frac{1}{\sqrt{3n+5}}
\end{align*}
前一个式子可以利用 $\sin^2x<x^2-\dfrac{x^4}3+\dfrac{2x^6}{45}$ 转化为证明
$$
\frac{45n^2-75n+50}{9n^3}<\frac5{n+1}\Leftrightarrow6n^2+5n-10>0
$$
显然成立, 后一个式子可以利用 $\sin^2x>x^2-\dfrac{x^4}3$ 转化为证明
$$
\frac{9n+5}{27n^2+36n+12}>\frac{1}{3n+5}\Leftrightarrow 24n+13>0
$$
显然成立. $\square$

话说上次在知乎上看到这个 $a_n$ 好像说是 $a_n=\sqrt{\dfrac{3}{n}}+o\left(n^{-\tfrac12}\right)$

链接: zhihu.com/question/419461549/answer/2958046921

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-8-9 09:16
O-17 发表于 2023-8-9 03:24
好像说是 $a_n=\sqrt{\dfrac{3}{n}}+o\left(n^{-\tfrac12}\right)$
这里的 $a_n$ 没有初值 $a_0=\frac\pi4$ 吧. 对任何$t$, $\lim_{n\to\infty}\underbrace{\sin\dots\sin}_nt=0$.
只需证明,不管$\epsilon>0$多么小,只要$t>0$足够小,
$$\frac{t}{\sqrt{1+\frac{n t^2}{3-\varepsilon}}}<\underbrace{\sin\dots\sin}_nt<\frac{t}{\sqrt{1+\frac{n t^2}{3+\varepsilon}}}$$

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

 Author| hbghlyj Posted 2023-8-9 09:25
hbghlyj 发表于 2023-8-9 09:16
只需证明,不管$\epsilon>0$多么小,只要$t>0$足够小,
$$\frac{t}{\sqrt{1+\frac{n t^2}{3-\varepsilon}}}<\underbrace{\sin\dots\sin}_nt<\frac{t}{\sqrt{1+\frac{n t^2}{3+\varepsilon}}}$$
因为$\frac{t}{\sqrt{1+\frac{t^2}{3-\varepsilon}}}$作$n$次迭代是$\frac{t}{\sqrt{1+\frac{n t^2}{3-\varepsilon}}}$,只需证
\[\frac{t}{\sqrt{1+\frac{t^2}{3-\varepsilon}}} \leqslant \sin t \leqslant \frac{t}{\sqrt{1+\frac{t^2}{3+\varepsilon}}}\]

Mobile version|Discuz Math Forum

2025-5-31 11:06 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit