|
求$f(x)=\sqrt{x^4-3x^2-6x+41}-\sqrt{x^4-x^2+1}$的最大值。之前做过一题,求$f(x)=\sqrt{x^4-3x^2-6x+\color{red}{13}}-\sqrt{x^4-x^2+1}$的最大值,这个可以化为$f(x)=\sqrt{\left(x-3\right)^2+\left(x^2-2\right)^2}-\sqrt{x^2+\left(x^2-1\right)^2}$,从而化为点$P\left(x,~x^2\right)$到点$A\left(3,~2\right)$与点$B\left(0,~1\right)$的距离之差。但是这个凑不出来。若考虑到$41=25+16$,但是二次项和一次项就凑不出来了。请问这个题如何用数形结合求该函数的最大值,或者纯不等式方法也可以。感谢~ |
|