Forgot password
 Register account
View 266|Reply 4

[几何] 一道几何面积比例问题

[Copy link]

10

Threads

3

Posts

0

Reputation

Show all posts

yoyo987654 posted 2023-8-22 23:43 |Read mode
请教各位
Q.jpg

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-23 00:25
设梯形 `ABCD` 面积为 `S`,则
\begin{align*}
\S{ADC}&=\frac13S,\\
\S{BDC}&=\frac23S,\\
\S{ADN}&=\frac1{1+a}\S{ADC}=\frac1{3(1+a)}S,\\
\S{MDC}&=\frac1{1+a}\S{ADC}+\frac a{1+a}\S{BDC}=\frac{1+2a}{3(1+a)}S,\\
\S{MNC}&=\frac a{1+a}\S{MDC}=\frac{a(1+2a)}{3(1+a)^2}S,\\
S_{\text{阴影}}&=\S{ADN}+\S{MNC}=\left(\frac1{3(1+a)}+\frac{a(1+2a)}{3(1+a)^2}\right)S,
\end{align*}
那占一半就是
\[\frac1{3(1+a)}+\frac{a(1+2a)}{3(1+a)^2}=\frac12\riff a=1+\sqrt2.\]

Comment

想问一问三角形MDC的面积 = (1/1+a)三角形ADC的面积 + (a/1+a)三角形BDC的面积 这一步是怎样得来的?  posted 2023-8-23 22:23

56

Threads

984

Posts

41

Reputation

Show all posts

乌贼 posted 2023-8-23 03:49
如图: 27.png
\[ S_{\triangle ADN}+S_{\triangle MNC}=\dfrac{3}{2}S_{\triangle AED}\riff\dfrac{1}{2}xz+\dfrac{1}{2}\dfrac{(2a+1)x}{a+1}a z=\dfrac{3}{2}\times \dfrac{1}{2}(z+az)x \]化简有\[ a^2-2a-1=0 \]\[ a=\sqrt{2}+1 \]

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-23 23:08
回 2# 的点评:
关于 `\S{MDC}=\frac1{1+a}\S{ADC}+\frac a{1+a}\S{BDC}` 这与“定比分点公式”是一个道理。

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:50 GMT+8

Powered by Discuz!

Processed in 0.013864 seconds, 26 queries