Forgot password
 Register account
View 206|Reply 5

[不等式] 两个最值问题

[Copy link]

6

Threads

7

Posts

0

Reputation

Show all posts

Rachmani posted 2023-8-26 21:07 |Read mode
Last edited by Rachmani 2023-8-26 23:07$1.$已知$a^2+b^2=1$,求$\displaystyle a+\frac{1}{b+2}$的取值范围。由于没有相关计算软件,不能确定此问题是否为高次方程不可解问题。
$2.$已知正实数$a,b,c$满足$2a^4+b^4+c^4-2b^2c^2-2a^2b^2-2a^2c^2=0$,求$a^2\left(\frac{1}{b^2}+\frac{1}{c^2}\right)$的最大值。
感谢各位。

Comment

第一题:https://www.zhihu.com/question/615869439  posted 2023-8-26 23:54

764

Threads

4672

Posts

27

Reputation

Show all posts

isee posted 2023-8-26 23:56
第一题,化一元求求导啊,不然怎么知道会不会遇到高次方程呢
isee=freeMaths@知乎

6

Threads

7

Posts

0

Reputation

Show all posts

original poster Rachmani posted 2023-8-26 23:59
isee 发表于 2023-8-26 23:56
第一题,化一元求求导啊,不然怎么知道会不会遇到高次方程呢
求导后分子后出现了七次,吓得直接扔了

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-8-27 00:43
2. 记 `x=a^2`, `y=b^2`, `z=c^2`,条件可化为
\begin{align*}
4yz&=2x^2+(y+z)^2-2x(y+z)\\
&\geqslant\bigl(2\sqrt2-2\bigr)x(y+z),
\end{align*}
所以
\[x\left(\frac1y+\frac1z\right)\leqslant\frac2{\sqrt2-1}=2\sqrt2+2,\]
取等略。

6

Threads

7

Posts

0

Reputation

Show all posts

original poster Rachmani posted 2023-8-27 10:22 from mobile
感谢(≧∇≦)

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:45 GMT+8

Powered by Discuz!

Processed in 0.012278 seconds, 24 queries