Forgot password
 Register account
View 317|Reply 4

[数论] 一道数列比赛题目

[Copy link]

10

Threads

3

Posts

0

Reputation

Show all posts

yoyo987654 posted 2023-8-29 13:01 |Read mode
请教思路

Q.jpg

48

Threads

771

Posts

93

Reputation

Show all posts

Czhang271828 posted 2023-8-30 12:32
Last edited by Czhang271828 2023-8-30 13:30\begin{align*}
&\quad\,\,\gcd(n^3-4,(n+1)^3-4)\\[5pt]
&=\gcd(n^3-4,3n^2+3n+1)\\[5pt]
&=\gcd(3n^3-12,3n^2+3n+1)\\[5pt]
&=\gcd(-3n^2-n-12,3n^2+3n+1)\\[5pt]
&=\gcd(2n-11,3n^2+3n+1)\\[5pt]
&=\gcd(2n-11,6n^2+6n+2)\\[5pt]
&=\gcd(2n-11,33n+35)\\[5pt]
&=\gcd(2n-11,n+211)\\[5pt]
&=\gcd(433,n+211)\\[5pt]
\end{align*}

注意到 $433$ 是质数. 除了 $\gcd((222+433k)^3-4,(223+433k)^3-4)=433$, 其余情况 $\gcd(n^3-4,(n+1)^3-4)=1$.  

Comment

学习鸟😃  posted 2023-8-30 12:56
谢谢,明白  posted 2023-8-30 13:43
就是辗转相除  posted 2023-8-30 14:01

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-15 14:07 GMT+8

Powered by Discuz!

Processed in 0.015778 seconds, 30 queries