Forgot password?
 Register account
View 334|Reply 4

[数论] 一道数列比赛题目

[Copy link]

10

Threads

3

Posts

110

Credits

Credits
110

Show all posts

yoyo987654 Posted 2023-8-29 13:01 |Read mode
请教思路

Q.jpg

48

Threads

771

Posts

110K

Credits

Credits
13880
QQ

Show all posts

Czhang271828 Posted 2023-8-30 12:32
Last edited by Czhang271828 2023-8-30 13:30\begin{align*}
&\quad\,\,\gcd(n^3-4,(n+1)^3-4)\\[5pt]
&=\gcd(n^3-4,3n^2+3n+1)\\[5pt]
&=\gcd(3n^3-12,3n^2+3n+1)\\[5pt]
&=\gcd(-3n^2-n-12,3n^2+3n+1)\\[5pt]
&=\gcd(2n-11,3n^2+3n+1)\\[5pt]
&=\gcd(2n-11,6n^2+6n+2)\\[5pt]
&=\gcd(2n-11,33n+35)\\[5pt]
&=\gcd(2n-11,n+211)\\[5pt]
&=\gcd(433,n+211)\\[5pt]
\end{align*}

注意到 $433$ 是质数. 除了 $\gcd((222+433k)^3-4,(223+433k)^3-4)=433$, 其余情况 $\gcd(n^3-4,(n+1)^3-4)=1$.  

Comment

学习鸟😃  Posted 2023-8-30 12:56
谢谢,明白  Posted 2023-8-30 13:43
就是辗转相除  Posted 2023-8-30 14:01

Mobile version|Discuz Math Forum

2025-5-31 10:36 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit