Forgot password?
 Register account
View 360|Reply 8

[函数] 已知 $f(x)=\frac{1}{x+1}$ 求复合函数 $f^n(x)$

[Copy link]

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

APPSYZY Posted 2023-8-31 22:52 |Read mode
Last edited by APPSYZY 2024-5-31 15:42已知函数
$$f(x)=\frac{1}{x+1},$$
可以归纳证明
$$f^n(x)=\frac{F_{n-1}x+F_n}{F_nx+F_{n+1}},$$
其中 Fibonacci 数列 $\langle F_n\rangle$ 满足
$$F_0=0;\qquad F_1=1;\qquad F_n=F_{n-1}+F_{n-2},\quad n>1.$$
如果将通项公式
$$F_n=\frac{\biggl(\dfrac{1+\sqrt5}{2}\biggr)^n-\biggl(\dfrac{1-\sqrt5}{2}\biggr)^n}{\sqrt5}$$
代入 $f^n(x)$ 的表达式,则可得到
$$f^n(x)=\dfrac{\dfrac{\biggl(\dfrac{1+\sqrt5}{2}\biggr)^{n-1}-\biggl(\dfrac{1-\sqrt5}{2}\biggr)^{n-1}}{\sqrt5}x+\dfrac{\biggl(\dfrac{1+\sqrt5}{2}\biggr)^n-\biggl(\dfrac{1-\sqrt5}{2}\biggr)^n}{\sqrt5}}{\dfrac{\biggl(\dfrac{1+\sqrt5}{2}\biggr)^n-\biggl(\dfrac{1-\sqrt5}{2}\biggr)^n}{\sqrt5}x+\dfrac{\biggl(\dfrac{1+\sqrt5}{2}\biggr)^{n+1}-\biggl(\dfrac{1-\sqrt5}{2}\biggr)^{n+1}}{\sqrt5}},$$
这一结果能否进一步化简?请教大家!

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-9-3 06:33
$\pmatrix{0&1\\1&1}^n=\pmatrix{F_{n-1}&F_n\\F_n&F_{n+1}}$

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2023-9-3 16:06
hbghlyj 发表于 2023-9-3 06:33
$\pmatrix{0&1\\1&1}^n=\pmatrix{F_{n-1}&F_n\\F_n&F_{n+1}}$
如何利用这个结论把 $f^n(x)$ 表达出来呢?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-9-3 20:30
Last edited by hbghlyj 2023-9-4 00:58
APPSYZY 发表于 2023-9-3 16:06
如何利用这个结论把 $f^n(x)$ 表达出来呢?
$\pmatrix{0&1\\1&1} = SJS^{-1}$
where
$S = \pmatrix{-1 -\sqrt5\over2&\sqrt5 - 1\over2\\1&1}$
$J =\pmatrix{1 -\sqrt5\over2&0\\0&1 +\sqrt5\over2}$

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2023-9-4 02:49
hbghlyj 发表于 2023-9-3 20:30
$\pmatrix{0&1\\1&1} = SJS^{-1}$
where
$S = \pmatrix{-1 -\sqrt5\over2&\sqrt5 - 1\over2\\1&1}$
这一步我看懂了,但还是想继续请教一下,如何进一步写出 $f^n(x)=?$ 呢?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-9-4 03:23
APPSYZY 发表于 2023-9-4 02:49
这一步我看懂了,但还是想继续请教一下,如何进一步写出 $f^n(x)=?$ 呢?
$\pmatrix{0&1\\1&1}^n =(SJS^{-1})^n= SJ^nS^{-1}=\pmatrix{F_{n-1}&F_n\\F_n&F_{n+1}}$
就得到1#相同的结果了

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2023-9-4 04:53
hbghlyj 发表于 2023-9-4 03:23
$\pmatrix{0&1\\1&1}^n =(SJS^{-1})^n= SJ^nS^{-1}=\pmatrix{F_{n-1}&F_n\\F_n&F_{n+1}}$
就得到1#相同的 ...
但是如何把矩阵 $\pmatrix{F_{n-1}&F_n\\F_n&F_{n+1}}$ 转化为函数 $\dfrac{F_{n-1}x+F_n}{F_nx+F_{n+1}}$ 呢?

3159

Threads

7941

Posts

610K

Credits

Credits
63770
QQ

Show all posts

hbghlyj Posted 2023-9-4 06:03
Last edited by hbghlyj 2023-9-4 20:20
APPSYZY 发表于 2023-9-4 04:53
但是如何把矩阵 $\pmatrix{F_{n-1}&F_n\\F_n&F_{n+1}}$ 转化为函数 $\dfrac{F_{n-1}x+F_n}{F_nx+F_{n+1}}$ 呢?
Möbius变换复合对应矩阵相乘,可直接计算或利用$ℂ_∞≅ℙ^1(ℂ)$证明,见complex.pdf第8页
An important fact about Möbius maps is that composing them corresponds to multiplying the relevant matrices. That is to say, we have the following.
Proposition 2.8 (Composition of Möbius maps). We have $\Psi_{g_1g_2} = \Psi_{g_1} ◦ \Psi_{g_2}$.
That is, $\mathrm{GL}_2(ℂ)$ acts on $ℂ_∞$ via Möbius maps.
利用$ℂ_∞≅ℙ^1(ℂ)$的证明在第9页: Screenshot 2023-09-04 at 06-09-44 complex.pdf.png

图中的长公式少打了右括号(不影响阅读),它应该是:\[\iota\left(\Psi_{g_1 g_2}(z)\right)=\tilde{\Psi}_{g_1 g_2}(\iota(z))=\tilde{\Psi}_{g_1}\left(\tilde{\Psi}_{g_2}(\iota(z))\right)=\tilde{\Psi}_{g_1}\left(\iota\left(\Psi_{g_2}(z)\right)\right)=\iota\left(\Psi_{g_1}\left(\Psi_{g_2}(z)\right)\right)\]这里利用Lemma 2.11的(矩阵乘法结合律)$\tilde{\Psi}_g \circ \iota=\iota \circ \Psi_g$把$\tilde{\Psi}_{g_1 g_2}=\tilde{\Psi}_{g_1} \circ \tilde{\Psi}_{g_2}$转译为$\Psi_{g_1 g_2}=\Psi_{g_1} \circ \Psi_{g_2}$.

81

Threads

165

Posts

1645

Credits

Credits
1645

Show all posts

 Author| APPSYZY Posted 2023-9-4 14:42
hbghlyj 发表于 2023-9-4 06:03
Möbius变换复合对应矩阵相乘,可直接计算或利用$ℂ_∞≅ℙ^1(ℂ)$证明,见complex.pdf第8页
An  ...
谢谢!我学习一下😄

Mobile version|Discuz Math Forum

2025-5-31 11:00 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit