Forgot password?
 Register account
View 307|Reply 3

[数列] 请教一道数列问题

[Copy link]

48

Threads

15

Posts

685

Credits

Credits
685

Show all posts

snowblink Posted 2023-9-2 18:26 |Read mode
已知数列$\left \{ a_{n}  \right \} $的首项不为零,记其前${n} $项和为${S_{n} } $,满足$2\sqrt{S_{n} } =a_{n}+c $.
$\left ( 1 \right ) $证明:${c} \leqslant 1$
$\left ( 2 \right ) $若${c} =0$,证明:$S_{n} \geqslant \left ( n+1 \right ) ^{2} $
$\left ( 3 \right ) $是否存在常数${c} $,使得$\left \{ a_{n}  \right \} $为等比数列?若存在,求出${c} $的所有可能值;若不存在,说明理由.

2

Threads

4

Posts

33

Credits

Credits
33

Show all posts

73Dsi Posted 2023-9-2 19:20
一九年海南的模拟考题.

25

Threads

1011

Posts

110K

Credits

Credits
12665

Show all posts

战巡 Posted 2023-9-5 18:03
1、
对$a_1$,有
\[2\sqrt{a_1}=a_1+c\]
\[a_1=2-c\pm2\sqrt{1-c}\]
很显然得有$c\le 1$

2、
此时易证有$a_1=S_1=4$
\[2\sqrt{S_n}=a_n=S_{n}-S_{n-1}\]
\[(\sqrt{S_n}-1)^2=S_{n-1}+1>S_{n-1}\]
鉴于很容易证明$S_n\ge 1$恒成立,于是
\[\sqrt{S_n}-1>\sqrt{S_{n-1}}\]
\[\sqrt{S_n}\ge n+1\]
\[S_n\ge (n+1)^2\]

3、
不妨假设$a_n=qa_{n-1}$好了
\[4S_n=a_n^2+2ca_n+c^2\]
\[4S_{n-1}=a_{n-1}^2+2ca_{n-1}+c^2\]
相减得到
\[4a_n=a_n^2-a_{n-1}^2+2c(a_n-a_{n-1})\]
\[4=a_n-\frac{a_{n-1}}{q}+2c(1-\frac{1}{q})\]
注意这里$c,q$是常数,意味着
\[a_n-\frac{a_{n-1}}{q}=C,(C为常数)\]
\[qa_{n-1}-\frac{a_{n-1}}{q}=C\]
\[a_{n-1}(q-\frac{1}{q})=C\]
这就只能是$q-\frac{1}{q}=C=0$了,然而$q\ne 1$,要不然$a_n=0$了,那只能$q=-1$
算下来就会有$c=1$,$a_n=(-1)^{n-1}$,这是唯一的情况

Comment

感谢战老师  Posted 2023-9-5 19:35

Mobile version|Discuz Math Forum

2025-5-31 11:17 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit